<< Chapter < Page Chapter >> Page >
R = v 0 2 sin 2 θ 0 g , size 12{R= { {v rSub { size 8{0} } rSup { size 8{2} } "sin"2θ rSub { size 8{0} } } over {g} } ","} {}

where v 0 size 12{v rSub { size 8{0} } } {} is the initial speed and θ 0 size 12{θ rSub { size 8{0} } } {} is the initial angle relative to the horizontal. The proof of this equation is left as an end-of-chapter problem (hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that R size 12{R} {} is very small compared with the circumference of the Earth. If, however, the range is large, the Earth curves away below the projectile and acceleration of gravity changes direction along the path. The range is larger than predicted by the range equation given above because the projectile has farther to fall than it would on level ground. (See [link] .) If the initial speed is great enough, the projectile goes into orbit. This possibility was recognized centuries before it could be accomplished. When an object is in orbit, the Earth curves away from underneath the object at the same rate as it falls. The object thus falls continuously but never hits the surface. These and other aspects of orbital motion, such as the rotation of the Earth, will be covered analytically and in greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the Earth orbits. In Addition of Velocities , we will examine the addition of velocities, which is another important aspect of two-dimensional kinematics and will also yield insights beyond the immediate topic.

A figure of the Earth is shown and on top of it a very high tower is placed. A projectile satellite is launched from this very high tower with initial velocity of v zero in the horizontal direction. Several trajectories are shown with increasing range. A circular trajectory is shown indicating the satellite achieved its orbit and it is revolving around the Earth.
Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance. With increasing initial speed, the range increases and becomes longer than it would be on level ground because the Earth curves away underneath its path. With a large enough initial speed, orbit is achieved.

Phet explorations: projectile motion

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Projectile Motion

Test prep for ap courses

In an experiment, a student launches a ball with an initial horizontal velocity of 5.00 meters/sec at an elevation 2.00 meters above ground. Draw and clearly label with appropriate values and units a graph of the ball's horizontal velocity vs. time and the ball's vertical velocity vs. time. The graph should cover the motion from the instant after the ball is launched until the instant before it hits the ground. Assume the downward direction is negative for this problem.

Summary

  • Projectile motion is the motion of an object through the air that is subject only to the acceleration of gravity.
  • To solve projectile motion problems, perform the following steps:
    1. Determine a coordinate system. Then, resolve the position and/or velocity of the object in the horizontal and vertical components. The components of position s size 12{s} {} are given by the quantities x size 12{x} {} and y size 12{y} {} , and the components of the velocity v size 12{v} {} are given by v x = v cos θ size 12{v rSub { size 8{x} } =v"cos"θ} {} and v y = v sin θ size 12{v rSub { size 8{y} } =v"sin"θ} {} , where v size 12{v} {} is the magnitude of the velocity and θ size 12{θ} {} is its direction.
    2. Analyze the motion of the projectile in the horizontal direction using the following equations:
      Horizontal motion ( a x = 0 ) size 12{"Horizontal motion " \( a rSub { size 8{x} } =0 \) } {}
      x = x 0 + v x t size 12{x=x rSub { size 8{0} } +v rSub { size 8{x} } t} {}
      v x = v 0 x = v x = velocity is a constant. size 12{v rSub { size 8{x} } =v rSub { size 8{0x} } =v rSub { size 8{x} } ="velocity is a constant."} {}
    3. Analyze the motion of the projectile in the vertical direction using the following equations:
      Vertical motion ( Assuming positive direction is up; a y = g = 9 . 80 m /s 2 ) size 12{"Vertical motion " \( "Assuming positive direction is up; "a rSub { size 8{y} } = - g= - 9 "." "80"" m/s" rSup { size 8{2} } \) } {}
      y = y 0 + 1 2 ( v 0 y + v y ) t size 12{y=y rSub { size 8{0} } + { {1} over {2} } \( v rSub { size 8{0y} } +v rSub { size 8{y} } \) t} {}
      v y = v 0 y gt size 12{v rSub { size 8{y} } =v rSub { size 8{0y} } - ital "gt"} {}
      y = y 0 + v 0 y t 1 2 gt 2 size 12{y=y rSub { size 8{0} } +v rSub { size 8{0y} } t - { {1} over {2} } ital "gt" rSup { size 8{2} } } {}
      v y 2 = v 0 y 2 2 g ( y y 0 ) . size 12{v rSub { size 8{y} } rSup { size 8{2} } =v rSub { size 8{0y} } rSup { size 8{2} } - 2g \( y - y rSub { size 8{0} } \) } {}
    4. Recombine the horizontal and vertical components of location and/or velocity using the following equations:
      s = x 2 + y 2 size 12{s= sqrt {x rSup { size 8{2} } +y rSup { size 8{2} } } } {}
      θ = tan 1 ( y / x ) size 12{θ="tan" rSup { size 8{ - 1} } \( y/x \) } {}
      v = v x 2 + v y 2 size 12{v= sqrt {v rSub { size 8{x} } rSup { size 8{2} } +v rSub { size 8{y} } rSup { size 8{2} } } } {}
      θ v = tan 1 ( v y / v x ) . size 12{θ rSub { size 8{v} } ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{y} } /v rSub { size 8{x} } \) } {}
  • The maximum height h size 12{h} {} of a projectile launched with initial vertical velocity v 0 y size 12{v rSub { size 8{0y} } } {} is given by
    h = v 0 y 2 2 g . size 12{h= { {v rSub { size 8{0y} } rSup { size 8{2} } } over {2g} } } {}
  • The maximum horizontal distance traveled by a projectile is called the range . The range R size 12{R} {} of a projectile on level ground launched at an angle θ 0 size 12{θ rSub { size 8{0} } } {} above the horizontal with initial speed v 0 size 12{v rSub { size 8{0} } } {} is given by
    R = v 0 2 sin 2 θ 0 g . size 12{R= { {v rSub { size 8{0} } rSup { size 8{2} } "sin"2θ rSub { size 8{0} } } over {g} } } {}

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 7

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Sample chapters: openstax college physics for ap® courses. OpenStax CNX. Oct 23, 2015 Download for free at http://legacy.cnx.org/content/col11896/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sample chapters: openstax college physics for ap® courses' conversation and receive update notifications?

Ask