<< Chapter < Page Chapter >> Page >

Patterns and systematics

The recognition and appreciation of patterns has enabled us to make many discoveries. The periodic table of elements was proposed as an organized summary of the known elements long before all elements had been discovered, and it led to many other discoveries. We shall see in later chapters that patterns in the properties of subatomic particles led to the proposal of quarks as their underlying structure, an idea that is still bearing fruit.

Knowledge of the properties of elements and compounds grew, culminating in the mid-19th-century development of the periodic table of the elements by Dmitri Mendeleev (1834–1907), the great Russian chemist. Mendeleev proposed an ingenious array that highlighted the periodic nature of the properties of elements. Believing in the systematics of the periodic table, he also predicted the existence of then-unknown elements to complete it. Once these elements were discovered and determined to have properties predicted by Mendeleev, his periodic table became universally accepted.

Also during the 19th century, the kinetic theory of gases was developed. Kinetic theory is based on the existence of atoms and molecules in random thermal motion and provides a microscopic explanation of the gas laws, heat transfer, and thermodynamics (see Introduction to Temperature, Kinetic Theory, and the Gas Laws and Introduction to Laws of Thermodynamics ). Kinetic theory works so well that it is another strong indication of the existence of atoms. But it is still indirect evidence—individual atoms and molecules had not been observed. There were heated debates about the validity of kinetic theory until direct evidence of atoms was obtained.

The first truly direct evidence of atoms is credited to Robert Brown, a Scottish botanist. In 1827, he noticed that tiny pollen grains suspended in still water moved about in complex paths. This can be observed with a microscope for any small particles in a fluid. The motion is caused by the random thermal motions of fluid molecules colliding with particles in the fluid, and it is now called Brownian motion    . (See [link] .) Statistical fluctuations in the numbers of molecules striking the sides of a visible particle cause it to move first this way, then that. Although the molecules cannot be directly observed, their effects on the particle can be. By examining Brownian motion, the size of molecules can be calculated. The smaller and more numerous they are, the smaller the fluctuations in the numbers striking different sides.

Inside a circle, water molecules are shown with a magnified image of a suspended pollen grain. The suspended particle is being constantly hit by molecules in the surrounding fluid. The path followed by the pollen grain is zig-zagging and complex, illustrating Brownian motion.
The position of a pollen grain in water, measured every few seconds under a microscope, exhibits Brownian motion. Brownian motion is due to fluctuations in the number of atoms and molecules colliding with a small mass, causing it to move about in complex paths. This is nearly direct evidence for the existence of atoms, providing a satisfactory alternative explanation cannot be found.

It was Albert Einstein who, starting in his epochal year of 1905, published several papers that explained precisely how Brownian motion could be used to measure the size of atoms and molecules. (In 1905 Einstein created special relativity, proposed photons as quanta of EM radiation, and produced a theory of Brownian motion that allowed the size of atoms to be determined. All of this was done in his spare time, since he worked days as a patent examiner. Any one of these very basic works could have been the crowning achievement of an entire career—yet Einstein did even more in later years.) Their sizes were only approximately known to be 10 −10 m , based on a comparison of latent heat of vaporization and surface tension made in about 1805 by Thomas Young of double-slit fame and the famous astronomer and mathematician Simon Laplace.

Using Einstein’s ideas, the French physicist Jean-Baptiste Perrin (1870–1942) carefully observed Brownian motion; not only did he confirm Einstein’s theory, he also produced accurate sizes for atoms and molecules. Since molecular weights and densities of materials were well established, knowing atomic and molecular sizes allowed a precise value for Avogadro’s number to be obtained. (If we know how big an atom is, we know how many fit into a certain volume.) Perrin also used these ideas to explain atomic and molecular agitation effects in sedimentation, and he received the 1926 Nobel Prize for his achievements. Most scientists were already convinced of the existence of atoms, but the accurate observation and analysis of Brownian motion was conclusive—it was the first truly direct evidence.

A huge array of direct and indirect evidence for the existence of atoms now exists. For example, it has become possible to accelerate ions (much as electrons are accelerated in cathode-ray tubes) and to detect them individually as well as measure their masses (see More Applications of Magnetism for a discussion of mass spectrometers). Other devices that observe individual atoms, such as the scanning tunneling electron microscope, will be discussed elsewhere. (See [link] .) All of our understanding of the properties of matter is based on and consistent with the atom. The atom’s substructures, such as electron shells and the nucleus, are both interesting and important. The nucleus in turn has a substructure, as do the particles of which it is composed. These topics, and the question of whether there is a smallest basic structure to matter, will be explored in later parts of the text.

A pattern of diagonal lines in golden and brown color depicting gold atoms as observed with a scanning tunneling electron microscope.
Individual atoms can be detected with devices such as the scanning tunneling electron microscope that produced this image of individual gold atoms on a graphite substrate. (credit: Erwin Rossen, Eindhoven University of Technology, via Wikimedia Commons)

Section summary

  • Atoms are the smallest unit of elements; atoms combine to form molecules, the smallest unit of compounds.
  • The first direct observation of atoms was in Brownian motion.
  • Analysis of Brownian motion gave accurate sizes for atoms ( 10 −10 m on average) and a precise value for Avogadro’s number.

Conceptual questions

Name three different types of evidence for the existence of atoms.

Got questions? Get instant answers now!

Explain why patterns observed in the periodic table of the elements are evidence for the existence of atoms, and why Brownian motion is a more direct type of evidence for their existence.

Got questions? Get instant answers now!

If atoms exist, why can’t we see them with visible light?

Got questions? Get instant answers now!


Using the given charge-to-mass ratios for electrons and protons, and knowing the magnitudes of their charges are equal, what is the ratio of the proton’s mass to the electron’s? (Note that since the charge-to-mass ratios are given to only three-digit accuracy, your answer may differ from the accepted ratio in the fourth digit.)

1 . 84 × 10 3 size 12{1 "." "84" times "10" rSup { size 8{3} } } {}

Got questions? Get instant answers now!

(a) Calculate the mass of a proton using the charge-to-mass ratio given for it in this chapter and its known charge. (b) How does your result compare with the proton mass given in this chapter?

Got questions? Get instant answers now!

If someone wanted to build a scale model of the atom with a nucleus 1.00 m in diameter, how far away would the nearest electron need to be?

50 km

Got questions? Get instant answers now!

Questions & Answers

what is mass
Victor Reply
is the amount of an object
advantages of CRO over ordinary voltmeter
Dismas Reply
what is the difference between displacement and distance?!
Daniel Reply
what is equilibrium
Sade Reply
If a system is said to be under equilibrium whenever there is no force act upon it... And it remain in its initial stage..
What is conductivity
Saud Reply
It is the ease with which electrical charges or heat can be transmitted through a material or a solution.
how to find magnitude and direction
Arjune Reply
how to caclculate for speed
derivation of ohms law
Kazeem Reply
derivation of resistance
R=v/I where R=resistor, v=voltage, I=current
A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t 0 s, the x components of the puck’s ini￾tial velocity and acceleration are v0x 1.0 m/s and ax 2.0 m/s2 . The y components of the puck’s initial velocity and acceleration are v0y 2.0 m/s and ay 2.0
Electric current is the flow of electrons
Kelly Reply
is there really flow of electrons exist?
Yes It exists
explain plz how electrons flow
if electron flows from where first come and end the first one
an electron will flow accross a conductor because or when it posseses kinectic energy
electron can not flow jist trasmit electrical energy
free electrons of conductor
electric means the flow heat current.
Serah Reply
electric means the flow of heat current in a circuit.
What is electric
Manasseh Reply
electric means?
electric means the flow of heat current in a circuit.
electric means the flow of electric current through conductor
the continuos flow of electrons in a circuit is called electric
electric means charge
electric means current
flow of current.
a boy cycles continuously through a distance of 1.0km in 5minutes. calculate his average speed in ms-1(meter per second). how do I solve this
Jenny Reply
speed = distance/time be sure to convert the km to m and minutes to seconds check my utube video "mathwithmrv speed"
d=1.0km÷1000=0.001 t=5×60=300s s=d\t s=0.001/300=0.0000033m\s
A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t 0 s, the x components of the puck’s ini￾tial velocity and acceleration are v0x 1.0 m/s and ax 2.0 m/s2 . The y components of the puck’s initial velocity and acceleration are v0y 2.0 m/s and ay 2.0
D=1km=1000m t=5mins×60secs=300sec s=d/t=3.333m/s
I think Daniel Glorious is ryt
why we cannot use DC instead of AC in a transformer
kusshaf Reply
becuse the d .c cannot travel for long distance trnsmission
what is physics
Chiwetalu Reply
branch of science which deals with matter energy and their relationship between them
Life science
what is heat and temperature
Kazeem Reply
how does sound affect temperature
Clement Reply
sound is directly proportional to the temperature.
Practice Key Terms 2

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?