# 30.3 Bohr’s theory of the hydrogen atom  (Page 7/14)

 Page 7 / 14

Explain how Bohr’s rule for the quantization of electron orbital angular momentum differs from the actual rule.

What is a hydrogen-like atom, and how are the energies and radii of its electron orbits related to those in hydrogen?

## Problems&Exercises

By calculating its wavelength, show that the first line in the Lyman series is UV radiation.

$\frac{1}{\lambda }=R\left(\frac{1}{{n}_{\text{f}}^{2}}-\frac{1}{{n}_{\text{i}}^{2}}\right)⇒\lambda =\frac{1}{R}\left[\frac{\left({n}_{\text{i}}\cdot {n}_{\text{f}}{\right)}^{2}}{{n}_{\text{i}}^{2}-{n}_{\text{f}}^{2}}\right];\phantom{\rule{0.25em}{0ex}}{n}_{\text{i}}=2,\phantom{\rule{0.25em}{0ex}}{n}_{\text{f}}=1,\phantom{\rule{0.25em}{0ex}}$ so that

$\lambda =\left(\frac{m}{1.097×{\text{10}}^{7}}\right)\left[\frac{\left(2×1{\right)}^{2}}{{2}^{2}-{1}^{2}}\right]=1\text{.}\text{22}×{\text{10}}^{-7}\phantom{\rule{0.25em}{0ex}}\text{m}=\text{122 nm}$ , which is UV radiation.

Find the wavelength of the third line in the Lyman series, and identify the type of EM radiation.

Look up the values of the quantities in ${a}_{\text{B}}=\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kq}}_{e}^{2}}{}^{}$ , and verify that the Bohr radius ${a}_{\text{B}}$ is $\text{0.529}×{\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{m}$ .

${a}_{\text{B}}=\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kZq}}_{e}^{2}}=\frac{\left(\text{6.626}×{\text{10}}^{-\text{34}}\phantom{\rule{0.25em}{0ex}}\text{J·s}{\right)}^{2}}{{4\pi }^{2}\left(9.109×{\text{10}}^{-\text{31}}\phantom{\rule{0.25em}{0ex}}\text{kg}\right)\left(8.988×{\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}\text{N}\text{·}{\text{m}}^{2}/{C}^{2}\right)\left(1\right)\left(1.602×{\text{10}}^{-\text{19}}\phantom{\rule{0.25em}{0ex}}\text{C}{\right)}^{2}}=\text{0.529}×{\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{m}$

Verify that the ground state energy ${E}_{0}$ is 13.6 eV by using ${E}_{0}=\frac{{2\pi }^{2}{q}_{e}^{4}{m}_{e}{k}^{2}}{{h}^{2}}\text{.}$

If a hydrogen atom has its electron in the $n=4$ state, how much energy in eV is needed to ionize it?

0.850 eV

A hydrogen atom in an excited state can be ionized with less energy than when it is in its ground state. What is $n$ for a hydrogen atom if 0.850 eV of energy can ionize it?

Find the radius of a hydrogen atom in the $n=2$ state according to Bohr’s theory.

$\text{2.12}×{\text{10}}^{\text{–10}}\phantom{\rule{0.25em}{0ex}}\text{m}$

Show that $\left(13.6 eV\right)/\text{hc}=\text{1.097}×{\text{10}}^{7}\phantom{\rule{0.25em}{0ex}}\text{m}=R$ (Rydberg’s constant), as discussed in the text.

What is the smallest-wavelength line in the Balmer series? Is it in the visible part of the spectrum?

365 nm

It is in the ultraviolet.

Show that the entire Paschen series is in the infrared part of the spectrum. To do this, you only need to calculate the shortest wavelength in the series.

Do the Balmer and Lyman series overlap? To answer this, calculate the shortest-wavelength Balmer line and the longest-wavelength Lyman line.

No overlap

365 nm

122 nm

(a) Which line in the Balmer series is the first one in the UV part of the spectrum?

(b) How many Balmer series lines are in the visible part of the spectrum?

(c) How many are in the UV?

A wavelength of $4\text{.}\text{653 μm}$ is observed in a hydrogen spectrum for a transition that ends in the ${n}_{\text{f}}=5$ level. What was ${n}_{\text{i}}$ for the initial level of the electron?

7

A singly ionized helium ion has only one electron and is denoted ${\text{He}}^{+}$ . What is the ion’s radius in the ground state compared to the Bohr radius of hydrogen atom?

A beryllium ion with a single electron (denoted ${\text{Be}}^{3+}$ ) is in an excited state with radius the same as that of the ground state of hydrogen.

(a) What is $n$ for the ${\text{Be}}^{3+}$ ion?

(b) How much energy in eV is needed to ionize the ion from this excited state?

(a) 2

(b) 54.4 eV

Atoms can be ionized by thermal collisions, such as at the high temperatures found in the solar corona. One such ion is ${C}^{+5}$ , a carbon atom with only a single electron.

(a) By what factor are the energies of its hydrogen-like levels greater than those of hydrogen?

(b) What is the wavelength of the first line in this ion’s Paschen series?

(c) What type of EM radiation is this?

Verify Equations ${r}_{n}=\frac{{n}^{2}}{Z}{a}_{\text{B}}$ and ${a}_{B}=\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kq}}_{e}^{2}}=\text{0.529}×{\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{m}$ using the approach stated in the text. That is, equate the Coulomb and centripetal forces and then insert an expression for velocity from the condition for angular momentum quantization.

$\frac{{\text{kZq}}_{e}^{2}}{{r}_{n}^{2}}=\frac{{m}_{e}{V}^{2}}{{r}_{n}}\text{,}$ so that ${r}_{n}=\frac{{\text{kZq}}_{e}^{2}}{{m}_{e}{V}^{2}}=\frac{{\text{kZq}}_{e}^{2}}{{m}_{e}}\frac{1}{{V}^{2}}\text{.}$ From the equation ${m}_{e}{\text{vr}}_{n}=n\frac{h}{2\pi }\text{,}$ we can substitute for the velocity, giving: ${r}_{n}=\frac{{\text{kZq}}_{e}^{2}}{{m}_{e}}\cdot \frac{{4\pi }^{2}{m}_{e}^{2}{r}_{n}^{2}}{{n}^{2}{h}^{2}}$ so that ${r}_{n}=\frac{{n}^{2}}{Z}\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kq}}_{e}^{2}}=\frac{{n}^{2}}{Z}{a}_{\text{B}},$ where ${a}_{\text{B}}=\frac{{h}^{2}}{{4\pi }^{2}{m}_{e}{\text{kq}}_{e}^{2}}$ .

The wavelength of the four Balmer series lines for hydrogen are found to be 410.3, 434.2, 486.3, and 656.5 nm. What average percentage difference is found between these wavelength numbers and those predicted by $\frac{1}{\lambda }=R\left(\frac{1}{{n}_{\text{f}}^{2}}-\frac{1}{{n}_{\text{i}}^{2}}\right)$ ? It is amazing how well a simple formula (disconnected originally from theory) could duplicate this phenomenon.

#### Questions & Answers

What is electric
Manasseh Reply
a boy cycles continuously through a distance of 1.0km in 5minutes. calculate his average speed in ms-1(meter per second). how do I solve this
Jenny Reply
speed = distance/time be sure to convert the km to m and minutes to seconds check my utube video "mathwithmrv speed"
PhysicswithMrV
why we cannot use DC instead of AC in a transformer
kusshaf Reply
becuse the d .c cannot travel for long distance trnsmission
ghulam
what is physics
Chiwetalu Reply
branch of science which deals with matter energy and their relationship between them
ghulam
Life science
the
what is heat and temperature
Kazeem Reply
how does sound affect temperature
Clement Reply
sound is directly proportional to the temperature.
juny
how to solve wave question
Wisdom Reply
I would like to know how I am not at all smart when it comes to math. please explain so I can understand. sincerly
Emma
Just know d relationship btw 1)wave length 2)frequency and velocity
Talhatu
First of all, you are smart and you will get it👍🏽... v = f × wavelength see my youtube channel: "mathwithmrv" if you want to know how to rearrange equations using the balance method
PhysicswithMrV
nice self promotion though xD
Beatrax
thanks dear
Chuks
hi pls help me with this question A ball is projected vertically upwards from the top of a tower 60m high with a velocity of 30ms1.what is the maximum height above the ground level?how long does it take to reach the ground level?
mahmoud
please guys help, what is the difference between concave lens and convex lens
Vincent Reply
convex lens brings rays of light to a focus while concave diverges rays of light
Christian
for mmHg to kPa yes
Matthew
it depends on the size
Matthew Reply
please what is concave lens
Vincent
a lens which diverge the ray of light
rinzuala
concave diverges light
Matthew
thank you guys
Vincent
A diverging lens
Yusuf
What is isotope
Yusuf
each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass but not in chemical properties; in particular, a radioactive form of an element. "some elements have only one stable isotope
Karthi
what is wire wound resistors?
Naveedkhan Reply
What are the best colleges to go to for physics
Matthew Reply
I would like to know this too
Trevor
How do I calculate uncertainty in a frequency?
Rebecca Reply
Calculate . ..
Olufunsho
What is light wave
Sakeenah Reply
What is wave
Sakeenah
What is light
Sakeenah
okay
True
explain how neurons communicate feed and stimulate
Jeff
Great science students
Omo
A wave is a disturbance which travels through the medium transferring energy from one form to another without causing any permanent displacement of d medium itself
OGOR
Light is a form o wave
OGOR
Neurons communicate by sending message through nerves in coordination
OGOR
What are petrochemicals, give two examples
OGOR
light has dual nature, particle as well as wave. when we want to explain phenomena like Interference of light, then we consider light as wave.
Lalita
what is it as in the form of it or how to visualize it or what it contains
Matthew
particles of light are like small packets of energy called photons, and flow or motion of photons is wave like
Lalita
light is just the energy of which photons emit
Matthew
the wave is how they travel
Matthew
photons do not emitt energy, they are energy. They are massless particles.
Lalita
a wave is a disturbance through the medium. Have you ever thrown a stone in still water? the disturbance produced travels in form of wave, the wave produced by throwing stone in still water are circular in nature.
Lalita
a photon does contain mass when in motion. it doesnt contain mass when at rest
Matthew
when would it ever be at rest
Bob
a wave is a disturbance of which energy travels
Matthew
that's darkness. darkness has no mass because the photons within in aren't moving or producing energy
Matthew
Hi guys. Please I've been trying to understand the concept of SHM, but it's not been really easy, could someone please explain it to me or suggest a site I could visit? Thank you.
Odo
***google.com/url?sa=t&source=web&rct=j&url=***hyperphysics.phy-astr.gsu.edu/hbase/shm.html&ved=2ahUKEwiwu_PYqfzdAhXOmVkKHXi2CvkQFjAPegQIARAB&usg=AOvVaw0h5IZmrkQK4KtEMygT4ZGK
Matthew
effective mass of photons only comes into picture when we consider it accelerating in gravitational field, mass of photon has no meaning as it is always travelling with speed of light and is never at rest. with that high speed, Energy and momentum are equivalent. and darkness is absense of photons.
Lalita
darkness is absense of light. not the presence of 'resting photons'. photons are never at rest.
Lalita
photons are present in darkness but don't give off any light because they are stationary with no mass or energy. once a force makes them move again they will gain mass and give off light
Matthew
this theory is presented in Einsteins theory of special relativity
Matthew
A.The velocity Vo for the streamline flow of liquid in a small tube depends on the radius r of the tube,the density and the viscosity iter of the liquid .use the dimensional analysis to obtain an expression for the velocity . B.Given that Vo =r square ×p all over 4×iter ×l
True
A.The velocity Vo for the streamline flow of liquid in a small tube depends on the radius r of the tube,the density (rho)and the viscosity (iter)of the liquid. Use the method of dimensional analysis to obtain an expression for the velocity . B.Given that Vo =r square x p all over 4 x iter x l
True
Matthew, photons ARE light. there is no such thing as a photon that isn't moving. in fact the speed they move at is called C (for constant) in physics. through a vacuum they always travel at this speed no matter what. they can not slow down; except in another medium.
Brad
The reason why a photon can go at this speed is BECAUSE it had no mass. nothing can go this speed or faster because it needs to have no mass or negative mass. that's why it's called the constant.
Brad
when a photon hits something that is opaque, this is the only way to "stop"it. it isn't merely stopped but absorbed and turned into heat energy, then the remaining energy is reflected in different wavelengths. that reflection is what we call color. the darker something is, the less photons are ther
Brad
e. complete blackness is the absolute absence of photons altogether. I believe what you're referring to is not speed, but wavelength, which is indirectly proportional to the amount of energy a particular photon is made up of.
Brad
in order for a photon to have zero wavelength, it must (at least theoretically) have infinite energy.
Brad
about mass: you may have photons confused with electrons. elections have a mass so small that people say they are without mass, but they do. it is called electron mass or Me-.
Brad
you may also be getting electrons and photons confused because of the cherenkov effect. that is what happens when a particle travels faster than light IN THAT PARTICULAR MEDIUM. I emphasize that because no other particle besides photons can go the speed of c.
Brad
when a particle goes faster than light in a particular medium, a blue light is emitted, called cherenkov radiation. this is why nuclear reactors glow blue.
Brad
nuclear reactors release so much energy that when they emit electrons, those electrons are given enough energy to go faster than light in that medium (in this case water), releasing blue light. if you put the reactor in air or a vacuum, this effect wouldn't happen because the speed of light in air
Brad
is very close to c, which is the universal speed limit. I'd you did go faster than c, time would go backwards and you would have infinite theoretical mass and probably spagghettify, like with a black hole.
Brad
*if
Brad
*electrons
Brad
light waves can travel through a vacuum, and do not require a medium. In empty space, the wave does not dissipate (grow smaller) no matter how far it travels, because the wave is not interacting with anything else.
Salim
Please is there any instructional material for sounds Waves, Echo, light waves
Salami
how far there is hot topic that is boarding me now
Abraham
linear motion
Ahmed
kinematic
Abraham
tell us about it
Akinsanya
kinematic
Emma
kinematics disscuss the motion without cuases ...
ghulam
wow I like what am seeing here I need someone to brush me up in physics in fact I'll say I know nothing
Godslight
How does the Geiger tube works
Salma Reply
pls he do we find for tension
Belinda Reply
tension is equal to the weight of the object. so for example if something weighs 45 Newtons then the tension in the Rope holding it is 45 Newtons. and because it is in equilibrium if the object is 45N and there are three ropes holding it there would be 15 N of tension in each to equal the weight
Shii
does that work for you?
Shii
tnx
Belinda
very correct
Kudzy

### Read also:

#### Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

 By