<< Chapter < Page Chapter >> Page >
  • Explain the concept of pressure the in human body.
  • Explain systolic and diastolic blood pressures.
  • Describe pressures in the eye, lungs, spinal column, bladder, and skeletal system.

Pressure in the body

Next to taking a person’s temperature and weight, measuring blood pressure is the most common of all medical examinations. Control of high blood pressure is largely responsible for the significant decreases in heart attack and stroke fatalities achieved in the last three decades. The pressures in various parts of the body can be measured and often provide valuable medical indicators. In this section, we consider a few examples together with some of the physics that accompanies them.

[link] lists some of the measured pressures in mm Hg, the units most commonly quoted.

Typical pressures in humans
Body system Gauge pressure in mm Hg
Blood pressures in large arteries (resting)
Maximum (systolic) 100–140
Minimum (diastolic) 60–90
Blood pressure in large veins 4–15
Eye 12–24
Brain and spinal fluid (lying down) 5–12
Bladder
While filling 0–25
When full 100–150
Chest cavity between lungs and ribs −8 to −4
Inside lungs −2 to +3
Digestive tract
Esophagus −2
Stomach 0–20
Intestines 10–20
Middle ear <1

Blood pressure

Common arterial blood pressure measurements typically produce values of 120 mm Hg and 80 mm Hg, respectively, for systolic and diastolic pressures. Both pressures have health implications. When systolic pressure is chronically high, the risk of stroke and heart attack is increased. If, however, it is too low, fainting is a problem. Systolic pressure increases dramatically during exercise to increase blood flow and returns to normal afterward. This change produces no ill effects and, in fact, may be beneficial to the tone of the circulatory system. Diastolic pressure can be an indicator of fluid balance. When low, it may indicate that a person is hemorrhaging internally and needs a transfusion. Conversely, high diastolic pressure indicates a ballooning of the blood vessels, which may be due to the transfusion of too much fluid into the circulatory system. High diastolic pressure is also an indication that blood vessels are not dilating properly to pass blood through. This can seriously strain the heart in its attempt to pump blood.

Blood leaves the heart at about 120 mm Hg but its pressure continues to decrease (to almost 0) as it goes from the aorta to smaller arteries to small veins (see [link] ). The pressure differences in the circulation system are caused by blood flow through the system as well as the position of the person. For a person standing up, the pressure in the feet will be larger than at the heart due to the weight of the blood ( P = hρg ) size 12{ \( P=hρg \) } {} . If we assume that the distance between the heart and the feet of a person in an upright position is 1.4 m, then the increase in pressure in the feet relative to that in the heart (for a static column of blood) is given by

Δ P = Δ hρg = 1.4 m 1050 kg /m 3 9.80 m /s 2 = 1 . 4 × 10 4 Pa = 108 mm Hg . size 12{ΔP=ρ ital "gh"= left ("1050"`"kgm" rSup { size 8{ - 3} } right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right ) left (1 "." 4`m right )=1 "." 4 times "10" rSup { size 8{4} } `"Pa"="108"`"mm"`"Hg"} {}

Increase in pressure in the feet of a person

Δ P = Δ hρg = 1.4 m 1050 kg /m 3 9.80 m /s 2 = 1 . 4 × 10 4 Pa = 108 mm Hg . size 12{ΔP=ρ ital "gh"= left ("1050"`"kgm" rSup { size 8{ - 3} } right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right ) left (1 "." 4`m right )=1 "." 4 times "10" rSup { size 8{4} } `"Pa"="108"`"mm"`"Hg"} {}

Questions & Answers

how to study physic and understand
Ewa Reply
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask