# 23.11 Reactance, inductive and capacitive

 Page 1 / 5
• Sketch voltage and current versus time in simple inductive, capacitive, and resistive circuits.
• Calculate inductive and capacitive reactance.
• Calculate current and/or voltage in simple inductive, capacitive, and resistive circuits.

Many circuits also contain capacitors and inductors, in addition to resistors and an AC voltage source. We have seen how capacitors and inductors respond to DC voltage when it is switched on and off. We will now explore how inductors and capacitors react to sinusoidal AC voltage.

## Inductors and inductive reactance

Suppose an inductor is connected directly to an AC voltage source, as shown in [link] . It is reasonable to assume negligible resistance, since in practice we can make the resistance of an inductor so small that it has a negligible effect on the circuit. Also shown is a graph of voltage and current as functions of time.

The graph in [link] (b) starts with voltage at a maximum. Note that the current starts at zero and rises to its peak after the voltage that drives it, just as was the case when DC voltage was switched on in the preceding section. When the voltage becomes negative at point a, the current begins to decrease; it becomes zero at point b, where voltage is its most negative. The current then becomes negative, again following the voltage. The voltage becomes positive at point c and begins to make the current less negative. At point d, the current goes through zero just as the voltage reaches its positive peak to start another cycle. This behavior is summarized as follows:

## Ac voltage in an inductor

When a sinusoidal voltage is applied to an inductor, the voltage leads the current by one-fourth of a cycle, or by a $\text{90º}$ phase angle.

Current lags behind voltage, since inductors oppose change in current. Changing current induces a back emf $V=-L\left(\Delta I/\Delta t\right)$ . This is considered to be an effective resistance of the inductor to AC. The rms current $I$ through an inductor $L$ is given by a version of Ohm’s law:

$I=\frac{V}{{X}_{L}}\text{,}$

where $V$ is the rms voltage across the inductor and ${X}_{L}$ is defined to be

${X}_{L}=2\pi \text{fL}\text{,}$

with $f$ the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually produces this expression). ${X}_{L}$ is called the inductive reactance    , because the inductor reacts to impede the current. ${X}_{L}$ has units of ohms ( $1 H=1 \Omega \cdot \text{s}$ , so that frequency times inductance has units of $\left(\text{cycles/s}\right)\left(\Omega \cdot \text{s}\right)=\Omega$ ), consistent with its role as an effective resistance. It makes sense that ${X}_{L}$ is proportional to $L$ , since the greater the induction the greater its resistance to change. It is also reasonable that ${X}_{L}$ is proportional to frequency $f$ , since greater frequency means greater change in current. That is, $\Delta I/\Delta t$ is large for large frequencies (large $f$ , small $\Delta t$ ). The greater the change, the greater the opposition of an inductor.

## Calculating inductive reactance and then current

(a) Calculate the inductive reactance of a 3.00 mH inductor when 60.0 Hz and 10.0 kHz AC voltages are applied. (b) What is the rms current at each frequency if the applied rms voltage is 120 V?

Strategy

The inductive reactance is found directly from the expression ${X}_{L}=2\pi \text{fL}$ . Once ${X}_{L}$ has been found at each frequency, Ohm’s law as stated in the Equation $I=V/{X}_{L}$ can be used to find the current at each frequency.

Solution for (a)

Entering the frequency and inductance into Equation ${X}_{L}=2\pi \text{fL}$ gives

Similarly, at 10 kHz,

${X}_{L}=2\pi \text{fL}=6\text{.}\text{28}\left(1.00×{\text{10}}^{\text{4}}\text{/s}\right)\left(3\text{.}\text{00 mH}\right)=\text{188 Ω at 10 kHz}.$

Solution for (b)

The rms current is now found using the version of Ohm’s law in Equation $I=V/{X}_{L}$ , given the applied rms voltage is 120 V. For the first frequency, this yields

$I=\frac{V}{{X}_{L}}=\frac{\text{120 V}}{1.13 \Omega }=\text{106 A at 60 Hz}.$

Similarly, at 10 kHz,

$I=\frac{V}{{X}_{L}}=\frac{\text{120 V}}{\text{188 Ω}}=0.637 A at 10 kHz.$

Discussion

The inductor reacts very differently at the two different frequencies. At the higher frequency, its reactance is large and the current is small, consistent with how an inductor impedes rapid change. Thus high frequencies are impeded the most. Inductors can be used to filter out high frequencies; for example, a large inductor can be put in series with a sound reproduction system or in series with your home computer to reduce high-frequency sound output from your speakers or high-frequency power spikes into your computer.

is there more then 4 dimensions
hii
princy
hi
Miguel
how can we find absolute uncertainty
it what?
Luke
in physics
ayesha
the basic formula is uncertainty in momentum multiplied buy uncertainty In position is greater than or equal to 4×pi/2. same formula for energy and time
Luke
I have this one question can you please look it up it's 9702/22/O/N/17 Question 1 B 3
ayesha
what
uma
would you like physics?
Suthar
yes
farooq
precision or absolute uncertainty is always equal to least count of that instrument
Iram
how do I unlock the MCQ and the Essay?
what is the dimension of strain
Is there a formula for time of free fall given that the body has initial velocity? In other words, formula for time that takes a downward-shot projectile to hit the ground. Thanks!
hi
Agboro
hiii
Chandan
Hi
Sahim
hi
Jeff
hey
Priscilla
sup guys
Bile
Hy
Kulsum
What is unit of watt?
Kulsum
watt is the unit of power
Rahul
p=f.v
Rahul
watt can also be expressed as Nm/s
Rahul
what s i unit of mass
Maxamed
SI unit of mass is Kg(kilogram).
Robel
what is formula of distance
Maxamed
Formula for for the falling body with initial velocity is:v^2=v(initial)^2+2*g*h
Mateo
i can't understand
Maxamed
we can't do this calculation without knowing the height of the initial position of the particle
Chathu
sorry but no more in science
Imoreh
2 forces whose resultant is 100N, are at right angle to each other .if one of them makes an angle of 30 degree with the resultant determine it's magnitude
50 N... (50 *1.732)N
Sahim
Plz cheak the ans and give reply..
Sahim
50 N...(50 *1.732)N
Ibrahim
show the working
usiomon
what is the value of f1 and f2
Syed
what is the value of force 1 and force 2.
Syed
.
Is earth is an inertial frame?
The abacus (plural abaci or abacuses), also called a counting frame, is a calculating tool that was in use in Europe, China and Russia, centuries before the adoption of the written Hindu–Arabic numeral system
Sahim
thanks
Irungu
Most welcome
Sahim
Hey.. I've a question.
Is earth inertia frame?
Sahim
only the center
Shii
What is an abucus?
Irungu
what would be the correct interrogation "what is time?" or "how much has your watch ticked?"
prakash
a load of 20N on a wire of cross sectional area 8×10^-7m produces an extension of 10.4m. calculate the young modules of the material of the wire is of length 5m
Young's modulus = stress/strain strain = extension/length (x/l) stress = force/area (F/A) stress/strain is F l/A x
El
so solve it
Ebenezer
Ebenezer
two bodies x and y start from rest and move with uniform acceleration of a and 4a respectively. if the bodies cover the same distance in terms of tx and ty what is the ratio of tx to ty
what is cesium atoms?
The atoms which form the element Cesium are known as Cesium atoms.
Naman
A material that combines with and removes trace gases from vacuum tubes.
Shankar
what is difference between entropy and heat capacity
Varun
Heat capacity can be defined as the amount of thermal energy required to warm the sample by 1°C. entropy is the disorder of the system. heat capacity is high when the disorder is high.
Chathu
I want learn physics
sir how to understanding clearly
Vinodhini
try to imagine everything you study in 3d
revolutionary
pls give me one title
Vinodhini
displacement acceleration how understand
Vinodhini
vernier caliper usage practically
Vinodhini
karthik sir is there
Vinodhini
what are the solution to all the exercise..?
What is realm
The quantum realm, also called the quantum scale, is a term of art inphysics referring to scales where quantum mechanical effects become important when studied as an isolated system. Typically, this means distances of 100 nanometers (10−9meters) or less or at very low temperature.
revolutionary
How to understand physics
i like physics very much
Vinodhini
i want know physics practically where used in daily life
Vinodhini
I want to teach physics very interesting to studentd
Vinodhini
how can you build interest in physics
Prince
Austin
understanding difficult
Vinodhini
vinodhini mam, physics is used in our day to day life in all events..... everything happening around us can be explained in the base of physics..... saying simple stories happening in our daily life and relating it to physics and questioning students about how or why its happening like that can make
revolutionary
revolutionary
anything send about physics daily life
Vinodhini
How to understand easily
Vinodhini
revolutionary
even when you see this message in your phone...it works accord to a physics principle. you touch screen works based on physics, your internet works based on physics, etc....... check out google and search for it
revolutionary