<< Chapter < Page Chapter >> Page >

All three rays appear to originate from the same point after being reflected, locating the upright virtual image behind the mirror and showing it to be larger than the object. (b) Makeup mirrors are perhaps the most common use of a concave mirror to produce a larger, upright image.

A convex mirror is a diverging mirror ( f size 12{f} {} is negative) and forms only one type of image. It is a case 3 image—one that is upright and smaller than the object, just as for diverging lenses. [link] (a) uses ray tracing to illustrate the location and size of the case 3 image for mirrors. Since the image is behind the mirror, it cannot be projected and is thus a virtual image. It is also seen to be smaller than the object.

Figure (a) shows three incident rays, 1, 2, and 3, falling on a convex mirror. Ray 1 falls parallel, ray 2 falls making an angle with the axis, and ray 3 falls obliquely. These rays after reflection appear to come from a point above the axis. The image is erect and diminished and falls above the axis behind the mirror. Here, the distance from the center of the mirror to focal point F is the focal length small f behind the mirror; the distances of the object and the image from the mirror are d sub o and d sub I, respectively. The heights of the object and the image are h sub o and h sub I, respectively. Figure (b) shows an image of a apparel and clothing show room as viewed in a convex mirror; the image appears to be small in size.
Case 3 images for mirrors are formed by any convex mirror. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 3 approaches toward the focal point. All three rays appear to originate from the same point after being reflected, locating the upright virtual image behind the mirror and showing it to be smaller than the object. (b) Security mirrors are convex, producing a smaller, upright image. Because the image is smaller, a larger area is imaged compared to what would be observed for a flat mirror (and hence security is improved). (credit: Laura D’Alessandro, Flickr)

Image in a convex mirror

A keratometer is a device used to measure the curvature of the cornea, particularly for fitting contact lenses. Light is reflected from the cornea, which acts like a convex mirror, and the keratometer measures the magnification of the image. The smaller the magnification, the smaller the radius of curvature of the cornea. If the light source is 12.0 cm from the cornea and the image’s magnification is 0.0320, what is the cornea’s radius of curvature?

Strategy

If we can find the focal length of the convex mirror formed by the cornea, we can find its radius of curvature (the radius of curvature is twice the focal length of a spherical mirror). We are given that the object distance is d o = 12.0 cm and that m = 0.0320 . We first solve for the image distance d i , and then for f size 12{f} {} .

Solution

m = –d i / d o . Solving this expression for d i gives

d i = md o .

Entering known values yields

d i = 0 . 0320 12.0 cm = –0.384 cm. size 12{d rSub { size 8{i} } "=-" left (0 "." "0320" right ) left ("12" "." 0" cm" right )"=-"0 "." "384"" cm"} {}
1 f = 1 d o + 1 d i size 12{ { {1} over {f} } = { {1} over {d rSub { size 8{o} } } } + { {1} over {d rSub { size 8{i} } } } } {}

Substituting known values,

1 f = 1 12.0 cm + 1 0 . 384 cm = 2 . 52 cm . size 12{ { {1} over {f} } = { {1} over {"12" "." 0" cm"} } + { {1} over {-0 "." "384"" cm"} } = { {-2 "." "52"} over {"cm"} } } {}

This must be inverted to find f size 12{f} {} :

f = cm 2 . 52 = –0 . 400 cm . size 12{f= { {"cm"} over { +- 2 "." "52"} } "=-"0 "." "400"" cm"} {}

The radius of curvature is twice the focal length, so that

R = 2 f = 0 . 800 cm. size 12{R=2 lline f rline =0 "." "800"" cm"} {}

Discussion

Although the focal length f size 12{f} {} of a convex mirror is defined to be negative, we take the absolute value to give us a positive value for R size 12{R} {} . The radius of curvature found here is reasonable for a cornea. The distance from cornea to retina in an adult eye is about 2.0 cm. In practice, many corneas are not spherical, complicating the job of fitting contact lenses. Note that the image distance here is negative, consistent with the fact that the image is behind the mirror, where it cannot be projected. In this section’s Problems and Exercises, you will show that for a fixed object distance, the smaller the radius of curvature, the smaller the magnification.

Questions & Answers

explain how a body becomes electrically charged based on the presence of charged particles
Kym Reply
induction
babar
induction
DEMGUE
definitely by induction
Raymond
induction
Raymond
induction
Shah
induction
Korodhso
what are the calculations of Newton's third law of motiow
Murtala Reply
what is dark matter
apex Reply
(in some cosmological theories) non-luminous material which is postulated to exist in space and which could take either of two forms: weakly interacting particles ( cold dark matter ) or high-energy randomly moving particles created soon after the Big Bang ( hot dark matter ).
Usman
if the mass of a trolley is 0.1kg. calculate the weight of plasticine that is needed to compensate friction. (take g=10m/s and u=0.2)
Declan Reply
what is a galaxy
Maduka Reply
what isflow rate of volume
Abcd Reply
flow rate is the volume of fluid which passes per unit time;
Rev
flow rate or discharge represnts the flow passing in unit volume per unit time
bhat
When two charges q1 and q2 are 6 and 5 coulomb what is ratio of force
Mian Reply
When reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel rims. Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the bicycle’s frame?
bimo Reply
is that the answer
nehemiah
why is it proportional
nehemiah Reply
i don't know
Adah
y
nehemiah
what are the relationship between distance and displacement
Usman Reply
They are interchangeable.
Shii
Distance is scalar, displacement is vector because it must involve a direction as well as a magnitude. distance is the measurement of where you are and where you were displacement is a measurement of the change in position
Shii
Thanks a lot
Usman
I'm beginner in physics so I can't reason why v=u+at change to v2=u2+2as and vice versa
Usman
what is kinematics
praveen
kinematics is study of motion without considering the causes of the motion
Theo
The study of motion without considering the cause 0f it
Usman
why electrons close to the nucleus have less energy and why do electrons far from the nucleus have more energy
Theo
thank you frds
praveen
plz what is the third law of thermodynamics
Chidera Reply
third law of thermodynamics states that at 0k the particles will collalse its also known as death of universe it was framed at that time when it waa nt posible to reach 0k but it was proved wrong
bhat
I have not try that experiment but I think it will magnet....
Rev Reply
Hey Rev. it will
Jeff
I do think so, it will
Chidera
yes it will
lasisi
If a magnet is in a pool of water, would it be able to have a magnetic field?.
Stella Reply
yes Stella it would
Jeff
formula for electric current
Chizzy Reply
what is that about pleace
Fokoua
what are you given?
Kudzy
what is current
Fokoua
I=q/t
saifullahi
Current is the flow of electric charge per unit time.
saifullahi
What are semi conductors
saifullahi
materials that allows charge to flow at varying conditions, temperature for instance.
Mokua
these are materials which have electrical conductivity greater than the insulators but less than metal, in these materials energy band Gap is very narrow as compared to insulators
Sunil
materials that allows charge to flow at varying conditions, temperature for instance.
Obasi
wao so awesome
Fokoua
At what point in the oscillation of beam will a body leave it?
Atambiri
what is gravitational force
Adah
what is meant by the term law
Fahd Reply
Practice Key Terms 3

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask