<< Chapter < Page Chapter >> Page >
A bar graph depicting world energy consumption is shown. The year is listed on the horizontal axis and energy consumed is listed on the vertical axis. Energy consumption by the world is shown for different years. Energy consumption rises over time. In the year nineteen hundred and ninety it was three hundred seventy three multiplied by ten to the power eighteen joules, and the projection is that it will become eight hundred twelve multiplied by ten to the power eighteen joules by the year twenty thirty five.
Past and projected world energy use (source: Based on data from U.S. Energy Information Administration, 2011)
Solar cell arrays lined up in a field.
Solar cell arrays at a power plant in Steindorf, Germany (credit: Michael Betke, Flickr)

[link] displays the 2006 commercial energy mix by country for some of the prime energy users in the world. While non-renewable sources dominate, some countries get a sizeable percentage of their electricity from renewable resources. For example, about 67% of New Zealand’s electricity demand is met by hydroelectric. Only 10% of the U.S. electricity is generated by renewable resources, primarily hydroelectric. It is difficult to determine total contributions of renewable energy in some countries with a large rural population, so these percentages in this table are left blank.

Energy consumption—selected countries (2006)
Country Consumption, in EJ (10 18 J) Oil Natural Gas Coal Nuclear Hydro Other Renewables Electricity Use per capita (kWh/yr) Energy Use per capita (GJ/yr)
Australia 5.4 34% 17% 44% 0% 3% 1% 10000 260
Brazil 9.6 48% 7% 5% 1% 35% 2% 2000 50
China 63 22% 3% 69% 1% 6% 1500 35
Egypt 2.4 50% 41% 1% 0% 6% 990 32
Germany 16 37% 24% 24% 11% 1% 3% 6400 173
India 15 34% 7% 52% 1% 5% 470 13
Indonesia 4.9 51% 26% 16% 0% 2% 3% 420 22
Japan 24 48% 14% 21% 12% 4% 1% 7100 176
New Zealand 0.44 32% 26% 6% 0% 11% 19% 8500 102
Russia 31 19% 53% 16% 5% 6% 5700 202
U.S. 105 40% 23% 22% 8% 3% 1% 12500 340
World 432 39% 23% 24% 6% 6% 2% 2600 71

Energy and economic well-being

The last two columns in this table examine the energy and electricity use per capita. Economic well-being is dependent upon energy use, and in most countries higher standards of living, as measured by GDP (gross domestic product) per capita, are matched by higher levels of energy consumption per capita. This is borne out in [link] . Increased efficiency of energy use will change this dependency. A global problem is balancing energy resource development against the harmful effects upon the environment in its extraction and use.

A scatter plot of power consumption per capita versus G D P per capita for various countries. Power consumption in kilowatt per capita is shown along the horizontal axis and G D P per capita is show along the vertical axis.
Power consumption per capita versus GDP per capita for various countries. Note the increase in energy usage with increasing GDP. (2007, credit: Frank van Mierlo, Wikimedia Commons)

Conserving energy

As we finish this chapter on energy and work, it is relevant to draw some distinctions between two sometimes misunderstood terms in the area of energy use. As has been mentioned elsewhere, the “law of the conservation of energy” is a very useful principle in analyzing physical processes. It is a statement that cannot be proven from basic principles, but is a very good bookkeeping device, and no exceptions have ever been found. It states that the total amount of energy in an isolated system will always remain constant. Related to this principle, but remarkably different from it, is the important philosophy of energy conservation. This concept has to do with seeking to decrease the amount of energy used by an individual or group through (1) reduced activities (e.g., turning down thermostats, driving fewer kilometers) and/or (2) increasing conversion efficiencies in the performance of a particular task—such as developing and using more efficient room heaters, cars that have greater miles-per-gallon ratings, energy-efficient compact fluorescent lights, etc.

Questions & Answers

Why is there no 2nd harmonic in the classical electron orbit?
Shree Reply
how to reform magnet after been demagneted
Inuwa Reply
A petrol engine has a output of 20 kilowatts and uses 4.5 kg of fuel for each hour of running. The energy given out when 1 kg of petrol is burnt is 4.8 × 10 to the power of 7 Joules. a) What is the energy output of the engine every hour? b) What is the energy input of the engine every hour?
Morris Reply
what is the error during taking work done of a body..
Aliyu Reply
what kind of error do you think? and work is held by which force?
Daniela
I am now in this group
smart
theory,laws,principles and what-a-view are not defined. why? you
Douglas Reply
A simple pendulum is used in a physics laboratory experiment to obtain an experimental value for the gravitational acceleration, g . A student measures the length of the pendulum to be 0.510 meters, displaces it 10 o from the equilibrium position, and releases it. Using a s
Emmanuel Reply
so what question are you passing across... sir?
Olalekan
Two masses of 2 kg and 4 kg are held with a compressed spring between them. If the masses are released, the spring will push them away from each other. If the smaller mass moves off with a velocity of 6m/s, what is the stored energy in the spring when it is compressed?
Emmanuel Reply
54 joule
babar
how?
rakesh
Reduce that two body problem into one body problem. Apply potential and k. E formula to get total energy of the system
rakesh
i dont think dere is any potential energy... by d virtue of no height present
Olalekan
there is compressed energy,dats only potential energy na?
rakesh
yes.. but... how will u approach that question without The Height in the question?
Olalekan
Can you explain how you get 54J?
Emmanuel
Because mine is 36J
Emmanuel
got 36J too
Douglas
OK the answer is 54J Babar is correct
Emmanuel
Conservation of Momentum
Emmanuel
woow i see.. can you give the formula for this
joshua
Two masses of 2 kg and 4 kg are held with a compressed spring between them. If the masses are released, the spring will push them away from each other. If the smaller mass moves off with a velocity of 6m/s, what is the stored energy in the spring when it is compressed? Asume there is no external force.
Emmanuel Reply
Please help!
Emmanuel
please help find dy/dx 2x-y/x+y
Inuwa
By using the Quotient Rule dy/dx = 3y/(x +y)²
Emmanuel
3y/(x+y)²
Emmanuel
may be by using MC^2=MC^2 and Total energy=kinetic energy +potential energy so 1st find kinetic energy and den find potential energy which is stored energy
rakesh
i think i m correct
rakesh
But how?
Emmanuel
3y/(x+y)²
Douglas
what's the big bang?
kwame Reply
yes what is it?
LamaBbake
it is the explanation of how the universe began
Zainab
yes
Ana
explain
Chinagorom
in
Chinagorom
it is a theory on how the universe began. to understand more I would suggest researching the topic online.
david
thanks guys
kwame
if a force of 12N is applied to load of 200g what us the work done
Joshua Reply
We can seek accelation first
Nancy
we are given f=12 m=200g which is 0.2kg now from 2nd law of newton a= f/m=60m/s*2 work done=force applied x displacement cos (theta) w= 12x60 =720nm/s*2
Mudang
this very interesting question very complicated for me, í need urgent help. 1,two buses A and B travel along the same road in the same direction from Harper city (asume They both started from the same point) to Monrovia. if bus A maintains a Speedy of 60km/h and bus B a Speedy of 75km/h, how many
mohammed
hours Will it take bus B to overtake bus A assuming bus B starts One hour after bus A started. what is the distance travelled by the buses when They meet?.
mohammed
pls í need help
mohammed
4000 work is done
Ana
speed=distance /time distance=speed/time
Ana
now use this formula
Ana
what's the answer then
Julius
great Mudang
Kossi
please Ana explain 4000 ?
babar
hey mudang there is a product of force and acceleration not force and displacement
babar
@Mohammed answer is 0.8hours or 48mins
Douglas
nice
A.d
its not possible
Olalekan
í want the working procedure
mohammed
the answer is given but how Will One arrive at it. the answers are 4hours and 300m.
mohammed
physics is the science that studies the non living nature
isidor Reply
ancient greek language physis = nature
isidor
what is phyacs
technical Reply
if i am going to start studying physics where should i start?
BRIAN Reply
I think from kinematics
Nancy
You can find physics books at the library or online. That's how I started.
Chelsea
And yes, kinematics is usually where you can begin.
Chelsea
study basic algebra and calculus and can start from classical mechanics
Mudang
yes think so but dimension is the best starting point
Obed
3 formula's of equations of motion
benjamin Reply
vf=vi+at........1 s=vit+1/2(at)2 vf2=vi2+2as
Ana
solve the formula's please
benjamin
those are the three .. what you wanna solve ?
Nihrantz
For first equation simply integrate formula of acceleration in the limit v and u
Tripti
For second itegrate velocity formula by ising first equation
Tripti
similarly for 3 one integrate acceleration again by multiplying and dividing term ds
Tripti
any methods can take to solve this eqtions
a=vf-vi/t vf-vi=at vf=vi+at......1
Ana
suppose a body starts with an initial velocity vi and travels with uniform acceleration a for a period of time t.the distance covered by a body in this time is "s" and its final velocity becomes vf
Ana
what is the question dear
Zeeshan
average velocity=(vi+vf)/2 distance travelled=average velocity ×time therefore s=vi+vf/2×t from the first equation of motion ,we have vf =vi+at s=[vi+(vi+at)]/2×t s=(2vi+at)/2×t s=bit+1/2at2
Ana
find the distance
Ana
how
Zeeshan
Two speakers are arranged so that sound waves with the same frequency are produced and radiated through a room. An interference pattern is created. Calculate the distance between the two speakers?
Hayne Reply
How can we calculate without any information?
Amir
I think the formulae used for this question is lambda=(ax)/D
Amir
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask