<< Chapter < Page Chapter >> Page >
  • Apply problem-solving techniques to solve for quantities in more complex systems of forces.
  • Integrate concepts from kinematics to solve problems using Newton's laws of motion.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve also to illustrate some further subtleties of physics and to help build problem-solving skills.

Drag force on a barge

Suppose two tugboats push on a barge at different angles, as shown in [link] . The first tugboat exerts a force of 2.7 × 10 5 N size 12{2 "." 7 times "10" rSup { size 8{5} } " N"} {} in the x -direction, and the second tugboat exerts a force of 3.6 × 10 5 N size 12{3 "." 6 times "10" rSup { size 8{5} } " N"} {} in the y -direction.

(a) A view from above two tugboats pushing on a barge. One tugboat is pushing with the force F sub x equal to two point seven multiplied by ten to the power five newtons, shown by a vector arrow acting toward the right in the x direction. Another tugboat is pushing with a force F sub y equal to three point six multiplied by ten to the power five newtons acting upward in the positive y direction. Acceleration of the barge, a, is shown by a vector arrow directed fifty-three point one degree angle above the x axis. In the free-body diagram, F sub y is acting on a point upward, F sub x is acting toward the right, and F sub D is acting approximately southwest. (b) A right triangle is made by the vectors F sub x and F sub y. The base vector is shown by the force vector F sub x. and the perpendicular vector is shown by the force vector F sub y. The resultant is the hypotenuse of this triangle, making a fifty-three point one degree angle from the base, shown by the vector force F sub net pointing up the inclination. A vector F sub D points down the incline.
(a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only forces acting in the plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the water supporting it cancel and are not shown. Since the applied forces are perpendicular, the x - and y -axes are in the same direction as F x size 12{F rSub { size 8{x} } } {} and F y size 12{F rSub { size 8{y} } } {} . The problem quickly becomes a one-dimensional problem along the direction of F app size 12{F rSub { size 8{"app"} } } {} , since friction is in the direction opposite to F app size 12{F rSub { size 8{"app"} } } {} .

If the mass of the barge is 5.0 × 10 6 kg size 12{5 times "10" rSup { size 8{6} } " kg"} {} and its acceleration is observed to be 7 . 5 × 10 2 m/s 2 size 12{7 "." "52" times "10" rSup { size 8{ - 2} } " m/s" rSup { size 8{2} } } {} in the direction shown, what is the drag force of the water on the barge resisting the motion? (Note: drag force is a frictional force exerted by fluids, such as air or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in [link] (a) . We will define the total force of the tugboats on the barge as F app size 12{F rSub { size 8{"app"} } } {} so that:

F app = F x + F y size 12{F rSub { size 8{ ital "app"} } ital "= F" rSub { size 8{x} } ital "+ F" rSub { size 8{y} } } {}

Since the barge is flat bottomed, the drag of the water F D size 12{F rSub { size 8{D} } } {} will be in the direction opposite to F app size 12{F rSub { size 8{"app"} } } {} , as shown in the free-body diagram in [link] (b). The system of interest here is the barge, since the forces on it are given as well as its acceleration. Our strategy is to find the magnitude and direction of the net applied force F app size 12{F rSub { size 8{"app"} } } {} , and then apply Newton’s second law to solve for the drag force F D size 12{F rSub { size 8{D} } } {} .

Solution

Since F x size 12{F rSub { size 8{x} } } {} and F y size 12{F rSub { size 8{y} } } {} are perpendicular, the magnitude and direction of F app size 12{F rSub { size 8{"app"} } } {} are easily found. First, the resultant magnitude is given by the Pythagorean theorem:

F app = F x 2 + F y 2 F app = ( 2.7 × 10 5 N ) 2 + ( 3.6 × 10 5 N ) 2 = 4.5 × 10 5 N. alignl { stack { size 12{F rSub { size 8{ ital "app"} } = \( F rSub { size 8{x} rSup { size 8{2} } } + F rSub { size 8{y} rSup { size 8{2} } } \) rSup { size 8{1/2} } } {} #F rSub { size 8{ ital "app"} } = \( \( 2 "." 7 times "10" rSup { size 8{5} } " N" \) rSup { size 8{2} } + \( 3 "." 6 times "10" rSup { size 8{5} } " N" \) rSup { size 8{2} } \) rSup { size 8{1/2} } =4 "." "50" times "10" rSup { size 8{5} } " N" "." {} } } {}

The angle is given by

θ = tan 1 F y F x θ = tan 1 3.6 × 10 5 N 2.7 × 10 5 N = 53º , alignl { stack { size 12{θ="tan" rSup { size 8{ - 1} } left ( { {F rSub { size 8{y} } } over {F rSub { size 8{x} } } } right )} {} #θ="tan" rSup { size 8{ - 1} } left ( { { \( 2 "." 7 times "10" rSup { size 8{5} } " N" \) } over { \( 3 "." 6 times "10" rSup { size 8{5} } " N" \) } } right )="53" "." 1°, {} } } {}

which we know, because of Newton’s first law, is the same direction as the acceleration. F D size 12{F rSub { size 8{D} } } {} is in the opposite direction of F app size 12{F rSub { size 8{"app"} } } {} , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as F app size 12{F rSub { size 8{"app"} } } {} , but its magnitude is slightly less than F app size 12{F rSub { size 8{"app"} } } {} . The problem is now one-dimensional. From [link] (b) , we can see that

F net = F app F D size 12{F rSub { size 8{"net"} } =F rSub { size 8{"app"} } - F rSub { size 8{D} } } {} .

But Newton’s second law states that

F net = ma size 12{F rSub { size 8{"net"} } = ital "ma"} {} .

Thus,

F app F D = ma size 12{F rSub { size 8{"app"} } - F rSub { size 8{D} } = ital "ma"} {} .

This can be solved for the magnitude of the drag force of the water F D size 12{F rSub { size 8{D} } } {} in terms of known quantities:

F D = F app ma size 12{F rSub { size 8{D} } =F rSub { size 8{"app"} } - ital "ma"} {} .

Substituting known values gives

F D = ( 4 . 5 × 10 5 N ) ( 5 . 0 × 10 6 kg ) ( 7 . 5 × 10 –2 m/s 2 ) = 7 . 5 × 10 4 N size 12{F rSub { size 8{D} } = \( 4 "." "50" times "10" rSup { size 8{5} } " N" \) - \( 5 "." "00" times "10" rSup { size 8{6} } " kg" \) \( 7 "." "50" times "10" rSup { size 8{"-2"} } " m/s" rSup { size 8{2} } \) =7 "." "50" times "10" rSup { size 8{4} } " N"} {} .

The direction of F D size 12{F rSub { size 8{D} } } {} has already been determined to be in the direction opposite to F app size 12{F rSub { size 8{"app"} } } {} , or at an angle of 53º size 12{"53" "." 1°} {} south of west.

Questions & Answers

If an object has no acceleration in an inertial reference frame, can you conclude that no forces are acting on it?
Von Reply
No unbalanced forces
Sorry, no unbalanced net force
What are the two major system units in the world
Jizel Reply
What is physical quantities
Jizel
they are physical properties that can be measured or calculated
ZIFAC
Do you mean the SI system and Imperial system? SI is used by scientists the world over (with notable exception being the USA)
Who is the father of physics
Gabriel Reply
Newton.Geliliyo and Einstein is called father of physics
Neha
Newtin
Jizel
Einstein
Jizel
Ancient - Archimedes Classical Physics - Newton Modern Physics - Einstein But each of these has built on the work of predecessors. No single personality defines physics.
Thanks
Hussain
Galileo Galilie must be. He was the creator of the scientific method
Vincent
Galileo was no doubt inspirational, but the scientific method has existed for millennia. What Galileo did was prove the superiority of experimentation to just thinking (Aristotle's way). Again all noteworthy scientists
Newton galileo and Einstein
Gabriel
what is wave
Charity Reply
a wave is a distirbance that transmits energy from one place ro another within or without a medium
Vincent
wave is the transfer of energy from one medium to another without the transfer of particles
ZIFAC
wave is a disturbance which transfer energy from one medium to another without causing any permanent displacement by itself
Joyfulsounds
wave is a disturbance or oscillation that travel through space and matter,accompanied by a transfer of energy
Ridwan
A wave is any disturbances in an elastic medium which carries energy from one point to another through a medium
abdul
what is harmonic motion
Nozyani
is a restoring force
Joyfulsounds
a wave is a disturbance and there are trasfer energy from one medium to another and travel through any space without the trasfer of particles.
Neha
a wave is a disturbance that travels or carries energy from one point to another through a medium
Wisdom
A moving disturbance in the level of a body water, undulation
Jizel
what is thermodynamics
Williams Reply
what is thermodynamics
Charity
thermodynamics is a heat and energy significant physics
Neha
Relating to the conversation of heat into other forms of energy
Jizel
It's the science of conversion between heat and other forms of energy
ZIFAC
Are the antimatters of Hadrons also Hadrons?!Does the same rule apply to Leptons?
Daniel Reply
yes. Hadrons are the elementary particles that take part in stong, electromagnetic and weak interactions. Infact only Hadrons are involved in Strong interactions and when an anti-particle of any hadron is produced, it would be a hadron-conservations laws. Leptons are involved in weak int and follow
Lalita
what is physics
Sade
physic is a pure science that deal with behavior of matter,energy & how it related to other physical properties
Ridwan
Owk. But am are Art student.
Hussaini
Thanks a lot,Lalita
Daniel
what are the differences between reflection and refraction ?
Matins
What happens when an aeroplanes window is opened at cruise altitude?
Theophilus Reply
what is the minimum speed for any object to travel in time?
Pankaj Reply
as per theory of relativity, minimum speed will be the speed of light
Mr.
what is physics
Lote Reply
it is just a branch of science which deals with the reasons behind the daily activities taking place everyday in our lives. it clearly states the reason in the form of laws.
sandhya
?
lkpostpost2000@yahoo
like Newton's laws , Kepler's laws etc....
sandhya
physics is the study of motion or moving things. Usually the moving things are normal items like vars or planets but sometimes it's electricity or heat that moves.
Jake
physics is one of the most significant diciplines of natural science which describe the nature and its matter
Neha
I would describe it as the science that is interested in the fundamental laws of nature. For example, what is light, what is sound, what is electricity/magentism, what forces are at work on a specific body. The knowledge of the world around us makes it possible to fly, have cell phones, GPS, etc.
Robyn
what happens when an aeroplane takes off?
Kofi Reply
it flies
Mr.
the lift generated by the wing overcome the weight of the plane(in Newton)and a net force of upward is created
Phebilia
it is a direct application of Magnus effect (which helps in throwing curve balls) the wings of plane are made in such a way that the net flow of air is more below them rather than on their upper side. So when the plane accelerates, the flaps produce the upward lift when enough velocity is obtained
Mr.
then due to lower pressure on upper part of wings helps producing an additional lift because air flows from areaof lower to the area of higher pressure
Mr.
The engines located under the wings generate thrust .. in relation thrust is a force ... which ovwrcomes or becomes greater than the weight of the plane.. remember weight is a force Weight = m x g-2 So therefore F(thrust) becomes greater than F(weight) Even if by 1Newton the plane starts lifting o
Theophilus
what happens when a ship moves
Williams
What is the sign of an acceleration that reduces the magnitude of a negative velocity? Of a positive velocity?
Conwil Reply
If it reduces the magnitude of the velocity, the acceleration sign is the opposite compared to the velocity.
Nicolas
yes
Williams
what is accerelation
John Reply
an objects tendency to speed up over time
RayRay
acceleration is the change in velocity over the change in time it would be written delta-v over delta-t.
Shii
the change in velocity V over a period of time T.
Matthew
Delta means "change in"...not period of
Shii
just kidding. it all works mathematically
Shii
except doesn't time really only change if the instantaneous speeds vary...?
Shii
and I assume we are all talking average acceleration
Shii
Hey shiii 😀
conrad
the rate of change of velocity is callaed acceleration
Amna
a=delta v/delta t
Amna
the rate of change in velocity with respect to time is acceleration
Nana
nana you r right
Indrajit
good
oguji
what is meant by lost volt
Hardeyyemih Reply
Lost volt. Lol. It is the electrical energy lost due to the nature or the envirommental conditions (temperature and pressure) that affect the cable across which the potential difference is measured.
Theophilus
What is physics?
Bedabyas Reply
physics is brance science concerned with nature and properties of matter and energy
George
sure
Okpara
yah....
kashif
physics is study of the natural phenomenon on the basis of certain laws and principles. it's like watching a game of chess and trying to understand its rules how it's played.
Ajit
awesome
Okpara
physics is study of nature and it's law
AMRITA
physics is a branch of science that deals with the study of matter ,properties of matter and energy
Lote
Branch of science (study) of matter, motion and energy
Theophilus
what is a double-slit experiment?Explain.
Daniel Reply
when you pass a wave of any kind ie sound water light ect you get an interface pattern forming on a screen behind it, where the peaks and troughs add and cancel out due to the diffraction caused by a wave traveling through the slits
Luke
double slit experiment was done by YOUNG. And it's to give out monochromatic coherent, if an incoherent wave is passing through it. And then the waves form interference fringes. The screen placed in front of the double slit is preferably a film and then in the middle where "p=0" a brighter color
navid
is formed and then the constructive interferences occur at 0 (which is the brightest band)... then a sequence of bright band (constructive interference) and dark band (destructive interference) happens and the further from the central band the lower the intensity of bright band(constructive interfe
navid

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask