# 22.4 Magnetic field strength: force on a moving charge in a magnetic  (Page 2/7)

 Page 2 / 7

## Calculating magnetic force: earth’s magnetic field on a charged glass rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth’s small magnetic field. To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place where the Earth’s field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as shown in [link] .)

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation $F=\text{qvB}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta$ to find the force.

Solution

The magnetic force is

$F=\text{qvb}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta .$

We see that $\text{sin}\phantom{\rule{0.25em}{0ex}}\theta =1$ , since the angle between the velocity and the direction of the field is $\text{90º}$ . Entering the other given quantities yields

$\begin{array}{lll}F& =& \left(\text{20}×{\text{10}}^{–9}\phantom{\rule{0.25em}{0ex}}C\right)\left(\text{10 m/s}\right)\left(5×{\text{10}}^{–5}\phantom{\rule{0.25em}{0ex}}T\right)\\ & =& 1×{\text{10}}^{\text{–11}}\phantom{\rule{0.25em}{0ex}}\left(C\cdot \text{m/s}\right)\left(\frac{N}{C\cdot \text{m/s}}\right)=1×{\text{10}}^{\text{–11}}\phantom{\rule{0.25em}{0ex}}N.\end{array}$

Discussion

This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit, since the Earth’s field varies with location and is given to only one digit.) The Earth’s magnetic field, however, does produce very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge in a Magnetic Field: Examples and Applications .

## Section summary

• Magnetic fields exert a force on a moving charge q , the magnitude of which is
$F=\text{qvB}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta ,$
where $\theta$ is the angle between the directions of $v$ and $B$ .
• The SI unit for magnetic field strength $B$ is the tesla (T), which is related to other units by
$1 T=\frac{\text{1 N}}{C\cdot \text{m/s}}=\frac{\text{1 N}}{A\cdot m}.$
• The direction of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the direction of $v$ , the fingers in the direction of $B$ , and a perpendicular to the palm points in the direction of $F$ .
• The force is perpendicular to the plane formed by $\mathbf{\text{v}}$ and $\mathbf{\text{B}}$ . Since the force is zero if $\mathbf{\text{v}}$ is parallel to $\mathbf{\text{B}}$ , charged particles often follow magnetic field lines rather than cross them.

## Conceptual questions

If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is necessarily zero?

## Problems&Exercises

What is the direction of the magnetic force on a positive charge that moves as shown in each of the six cases shown in [link] ?

(a) Left (West)

(b) Into the page

(c) Up (North)

(d) No force

(e) Right (East)

(f) Down (South)

Repeat [link] for a negative charge.

What is the direction of the velocity of a negative charge that experiences the magnetic force shown in each of the three cases in [link] , assuming it moves perpendicular to $\mathbf{\text{B}}?$

(a) East (right)

(b) Into page

(c) South (down)

Repeat [link] for a positive charge.

What is the direction of the magnetic field that produces the magnetic force on a positive charge as shown in each of the three cases in the figure below, assuming $\mathbf{\text{B}}$ is perpendicular to $\mathbf{\text{v}}$ ?

(a) Into page

(b) West (left)

(c) Out of page

Repeat [link] for a negative charge.

What is the maximum force on an aluminum rod with a $0\text{.}\text{100}\text{-μC}$ charge that you pass between the poles of a 1.50-T permanent magnet at a speed of 5.00 m/s? In what direction is the force?

$7\text{.}\text{50}×{\text{10}}^{-7}\phantom{\rule{0.25em}{0ex}}\text{N}$ perpendicular to both the magnetic field lines and the velocity

(a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a $0\text{.}\text{500}\text{-μC}$ charge and flies due west at a speed of 660 m/s over the Earth’s south magnetic pole, where the $8\text{.}\text{00}×{\text{10}}^{-5}\text{-T}$ magnetic field points straight up. What are the direction and the magnitude of the magnetic force on the plane? (b) Discuss whether the value obtained in part (a) implies this is a significant or negligible effect.

(a) A cosmic ray proton moving toward the Earth at $\text{5.00}×{\text{10}}^{7}\phantom{\rule{0.25em}{0ex}}\text{m/s}$ experiences a magnetic force of $1\text{.}\text{70}×{\text{10}}^{-\text{16}}\phantom{\rule{0.25em}{0ex}}\text{N}$ . What is the strength of the magnetic field if there is a $\text{45º}$ angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.

(a) $3\text{.}\text{01}×{\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\text{T}$

(b) This is slightly less then the magnetic field strength of $5×{\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\text{T}$ at the surface of the Earth, so it is consistent.

An electron moving at $4\text{.}\text{00}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{m/s}$ in a 1.25-T magnetic field experiences a magnetic force of $1\text{.}\text{40}×{\text{10}}^{-\text{16}}\phantom{\rule{0.25em}{0ex}}\text{N}$ . What angle does the velocity of the electron make with the magnetic field? There are two answers.

(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than $1\text{.}\text{00}×{\text{10}}^{-\text{12}}\phantom{\rule{0.25em}{0ex}}N$ . What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity and noting that static is often absent.

(a) $6\text{.}\text{67}×{\text{10}}^{-\text{10}}\phantom{\rule{0.25em}{0ex}}\text{C}$ (taking the Earth’s field to be $5\text{.}\text{00}×{\text{10}}^{-5}\phantom{\rule{0.25em}{0ex}}\text{T}$ )

(b) Less than typical static, therefore difficult

I really need lots of questions on frictional force
Shii
I can help answering what I can
Shii
does friction also need some force to perform?
Mohit
no friction is a force just like the gravitational force
clifford
yeah but u can't apply friction anywhere else like other forces
Mohit
I don't understand that question. friction does work alongside other forces based on the situation.
clifford
eg. when walking there are two forces acting on us gravitational and frictional force. friction helps us move forward and gravity keeps us on the ground
clifford
friction is a contact force. Two surfaces are necessary for the force to work.
clifford
hope this helped
clifford
the friction force which oppose while it contact with surrounding. there are two kind of friction. slidding and rolling friction.
Neyaz
What is physics?
physics is a branch of science in which we are dealing with the knowledge of our physical things. macroscopic as well as microscopic. we are going look inside the univers with the help of physics. you can learn nature with the help of physics. so many branches of physics you have to learn physics.
vijay
What are quarks?
6 type of quarks
Neyaz
what is candela
Candela is the unit for the measurement of light intensity.
Osei
any one can prove that 1hrpower= 746 watt
Newton second is the unit of ...............?
Neyaz
Impulse and momentum
Fauzia
force×time and mass× velocity
vijay
Good
Neyaz
What is the simple harmonic motion?
oscillatory motion under a retarding force proportional to the amount of displacement from an equilibrium position
Yuri
Straight out of google, you could do that to, I suppose.
Yuri
*too
Yuri
ok
Fauzia
Oscillatory motion under a regarding force proportional to the amount of displacement from an equilibrium position
Neyaz
examples of work done by load of gravity
What is ehrenfest theorem?
You can look it up, faster and more reliable answer.
Yuri
That isn't a question to ask on a forum and I also have no idea what that is.
Yuri
what is the work done by gravity on the load 87kj,11.684m,mass xkg[g=19m/s
Maureen
What is law of mass action?
rate of chemical reactions is proportional to concentration of reactants ...
ok thanks
Fauzia
what is lenses
lenses are two types
Fauzia
concave and convex
right
Fauzia
speed of light in space
in vacuum speed of light is 3×10^8 m/s
vijay
ok
Vikash
2.99×10^8m/s
Umair
2.8820^8m/s
Muhammed
Vikash
he is correct but we can round up in simple terms
vijay
3×10^8m/s
vijay
is it correct
Fauzia
I mean 3*10^8 m/s ok
vijay
299792458 meter per second
babar
3*10^8m/s
Neyaz
how many Maxwell relations in thermodynamics
vijay
how we can do prove them?
vijay
What is second law of thermodynamics?
Neyaz
please who has a detailed solution to the first two professional application questions under conservation of momentum
I want to know more about pressure
Osei
I can help
Emeh
okay go on
True
I mean on pressure
Emeh
definition of Pressure
John
it is the force per unit area of a substance.S.I unit is Pascal 1pascal is defined as 1N acting on 1m² area i.e 1pa=1N/m²
Emeh
pls explain Doppler effect
Emmex
solve this an inverted differential manometer containing oil specific gravity 0.9 and manometer reading is 400mm find the difference of pressure
Einstine claim that nothing can go with the speed of light even its half (50%) but in to make antimatter they they hit the sub atomic particals 99.9%the speed of light how is it possible
nothing with physical properties. this doesn't include things like particles and gravitational waves
Mustafa
that particles are of very small mass.... near equals to massless
Aritra
but they exist
vijay
yes they exist but mass is too less
Aritra
ok
vijay
greet all
Abayomi
the unit of radioactivity is .....?
Neyaz
Great Sharukh ! Do you have question in physics?
book says that when wave enter from one medium to another its wavelenght changes but frequency not how ? and f is inversely related to wavelenth
Sharukh
yes but how comes
Sani
what is normal force?
the force that pushes upward on us. the force that opposes gravity
clifford