<< Chapter < Page Chapter >> Page >

International collaboration in this area is moving into space with the joint EU/US project LISA (Laser Interferometer Space Antenna). Earthquakes and other Earthly noises will be no problem for these monitoring spacecraft. LISA will complement LIGO by looking at much more massive black holes through the observation of gravitational-wave sources emitting much larger wavelengths. Three satellites will be placed in space above Earth in an equilateral triangle (with 5,000,000-km sides) ( [link] ). The system will measure the relative positions of each satellite to detect passing gravitational waves. Accuracy to within 10% of the size of an atom will be needed to detect any waves. The launch of this project might be as early as 2018.

“I’m sure LIGO will tell us something about the universe that we didn’t know before. The history of science tells us that any time you go where you haven’t been before, you usually find something that really shakes the scientific paradigms of the day. Whether gravitational wave astrophysics will do that, only time will tell.” —David Reitze, LIGO Input Optics Manager, University of Florida

NASA illustration of LISA, showing three spacecrafts positioned in orbits that form a triangular formation. The triangular formation is positioned to the left of the Sun, Earth, and Moon in the diagram. Figure not to scale.
Space-based future experiments for the measurement of gravitational waves. Shown here is a drawing of LISA’s orbit. Each satellite of LISA will consist of a laser source and a mass. The lasers will transmit a signal to measure the distance between each satellite’s test mass. The relative motion of these masses will provide information about passing gravitational waves. (credit: NASA)

The ideas presented in this section are but a glimpse into topics of modern physics that will be covered in much greater depth in later chapters.

Summary

  • The various types of forces that are categorized for use in many applications are all manifestations of the four basic forces in nature.
  • The properties of these forces are summarized in [link] .
  • Everything we experience directly without sensitive instruments is due to either electromagnetic forces or gravitational forces. The nuclear forces are responsible for the submicroscopic structure of matter, but they are not directly sensed because of their short ranges. Attempts are being made to show all four forces are different manifestations of a single unified force.
  • A force field surrounds an object creating a force and is the carrier of that force.

Conceptual questions

Explain, in terms of the properties of the four basic forces, why people notice the gravitational force acting on their bodies if it is such a comparatively weak force.

Got questions? Get instant answers now!

What is the dominant force between astronomical objects? Why are the other three basic forces less significant over these very large distances?

Got questions? Get instant answers now!

Give a detailed example of how the exchange of a particle can result in an attractive force. (For example, consider one child pulling a toy out of the hands of another.)

Got questions? Get instant answers now!

Problem exercises

(a) What is the strength of the weak nuclear force relative to the strong nuclear force? (b) What is the strength of the weak nuclear force relative to the electromagnetic force? Since the weak nuclear force acts at only very short distances, such as inside nuclei, where the strong and electromagnetic forces also act, it might seem surprising that we have any knowledge of it at all. We have such knowledge because the weak nuclear force is responsible for beta decay, a type of nuclear decay not explained by other forces.

(a) 1 × 10 13 size 12{1 times "10" rSup { size 8{ - "13"} } } {}

(b) 1 × 10 11 size 12{1 times "10" rSup { size 8{ - "11"} } } {}

Got questions? Get instant answers now!

(a) What is the ratio of the strength of the gravitational force to that of the strong nuclear force? (b) What is the ratio of the strength of the gravitational force to that of the weak nuclear force? (c) What is the ratio of the strength of the gravitational force to that of the electromagnetic force? What do your answers imply about the influence of the gravitational force on atomic nuclei?

Got questions? Get instant answers now!

What is the ratio of the strength of the strong nuclear force to that of the electromagnetic force? Based on this ratio, you might expect that the strong force dominates the nucleus, which is true for small nuclei. Large nuclei, however, have sizes greater than the range of the strong nuclear force. At these sizes, the electromagnetic force begins to affect nuclear stability. These facts will be used to explain nuclear fusion and fission later in this text.

10 2 size 12{"10" rSup { size 8{2} } } {}

Got questions? Get instant answers now!

Questions & Answers

what is work
Ojo Reply
Force times distance
Karanja
Is physics a natural science?
Adebisi Reply
what is the difference between a jet engine and a rocket engine.
Samuel Reply
explain the relationship between momentum and force
Joseph Reply
A moment is equivalent multiplied by the length passing through the point of reaction and that is perpendicular to the force
Karanja
How to find Squirrel frontal area from it's surface area?
Pooja Reply
how do we arrange the electronic configuration of elements
Muhammed Reply
hi guys i am an elementary student
benedict Reply
hi
Dancan
hello
adolphus
are you an elementary student too?
benedict
no bro
adolphus
yes
Che
hi
Miranwa
yes
Miranwa
welcome
Miranwa
what is the four equation of motion
Miranwa
what is strain?
SAMUEL
Change in dimension per unit dimension is called strain. Ex - Change in length per unit length l/L.
ABHIJIT
strain is the ratio of extension to length..=e/l...it has no unit because both are in meters and they cancel each other
adeleke
How is it possible for one to drink a cold drink from a straw?
Karanja Reply
most possible as it is for you to drink your wine from your straw
Selina
state the law of conservation of energy
Sushma Reply
energy can neither be destroy or created,but can be change from one form to another
dare
yeah
Toheeb
it can neither be created nor destroyed
Toheeb
its so sample question dude
Muhsin
what is the difference between a principle and a law?
Mary Reply
where are from you wendy .?
ghulam
philippines
Mary
why?
Mary
you are beautiful
ghulam
are you physics student
ghulam
laws are ment to be broken
Ge
hehe ghulam where r u from?
Muhsin
yes
dare
principle are meant to be followed
dare
south Africa
dare
here Nigeria
Toheeb
principle is a rule or law of nature, or the basic idea on how the laws of nature are applied.
Ayoka
Rules are meant to be broken while principals to be followed
Karanja
principle is a rule or law of nature, or the basic idea on how the laws of nature are applied.
tathir
what is momentum?
prakash Reply
is the mass times velocity of an object
True
it is the product of mass and velocity of an object.
The momentum possessed by a body is generally defined as the product of its mass and velocity m×v
Usman
momentum is the product of the mass of a body of its velocity
Ugbesia
what about kg it is changing or not
vijay Reply
no mass is the quantity or amount of body so it remains constant everywhere
Ahsan
yes
Siyanbola
remains constant
taha
mass of an object is always constant. and that is universally applied.
Shii
mass of a body never changes but the weight can change due to variance of gravity at different points of the world
Saheed
what is hookes law
Joshua
mass of an object does not change
SAMUEL
Is weight a scalar quantity
esther Reply
weight is actually a force of gravity with which earth attracts us downwards so it is a vector quantity. and it has both direction and magnitude
Ahsan
ty
Denise
weight is the earth pull of the body
Ugbesia
why does weight change but not mass?
Theo
Theo, the mass of an object can change but it depends on how you define that object. First, you need to know that mass is the amount of matter an object has, and weight is mass*gravity (the "force" that attracts object A to the object B mass).
Nicolas
So if you face object A with object B, you will get a different result than facing object A with object C, so the weight of object A changes but not its mass.
Nicolas
Now, if you have an object and you take a part away from it, you are changing it mass. Lets use the human body and fat loss process as an example.
Nicolas
When you lose weight by doing exercise, you are being attracted by the same object before and after losing weight so the change of weight is related to a change of mass not a change of gravity.
Nicolas
The explanation of this is simple, we are composed of smaller particles, which are itself objects, so the loose of mass of an object actually is the separation of one object is two different ones.
Nicolas
But if you define an object because of its form and characteristics and not the amount of mass, then the object is the same but you have taken a part of it mass away.
Nicolas
Theo, weight =mass. gravity, here mass is fixed everywhere but gravity change in different places so weight change not mass.
ABHIJIT
yup weight changes and mass does not. That's why we're 1/3 our weight on the moon
clifford
weight is the product of mass × velocity w=m×v = m(v-u) but v=u+1/2at^ weight is a scalar quantity mass of an obj is the amount of particles that obj cont
Usman
mass is fixed always while weight is dynamic
Usman
Why does water wet glass but mercury does not?
Yusuf
thanks guys
Theo
Yusuf Shuaibu, for water the Adhessive force between water molecules and glass is greater than the cohessive force between it's own molecules but for Mercury the cohessive force will be greater in comparison with adhessive force. For this water wet glass but Mercury does not.
ABHIJIT
in electrostatic e bonite rod electron is static. they cannot flow to other. because static. is it correct?
prabir Reply
Is weight a scalar quantity
esther
wieght is the vector
ghulam
yes
Mohet
Yes
Karanja
what is specific heat capacity of watee
paul Reply
what is mass
Siyanbola
@siyanbola Resistance to acceleration
Dillon
The specific heat capacity of water is 1 calorie/1C°/ for 1 gram of water . it means that number of calories required to raise the temperature of 1g of water from 15 to 16C° is 1.
Khalil
understood?
Khalil
I think it's 1 in joules/kgC
Dillon
Anderson where are you from?. . &. what is your qualification
Khalil
Anderson i think you are right
Khalil
Micheal
lawrence
what is acceleration
lawrence
rate of change of velocity is acceleration
Khalil
its amount of heat to raise the temlrature through one kelvin of substance .
ghulam
The amount of heat energy required to raise the température of water by 1K
Cffrrcvccgg
infact a it must be a unit mass of water
Cffrrcvccgg
approximately equal to 4184J/Kg/K
Cffrrcvccgg
Just got through thermodynamics last semester. Also a change in 1 degree in celcius is equivalent to a change in 1 degree kelvin
Dillon
Also it's 1J/kgK or 4.184 cal/gK or /gC
Dillon
I think, at least
Dillon
Anderson are you good in physics numerical problems . if yes... . then plz help me. i am good in physics theory but nill in numericals
Khalil
I can try, what's the problem? I may be busy soon but I will reply today or tomorrow
Dillon
Numericals 🙄
Khalil
4200kJ/kgk...
Trevor
J
Trevor
SHM and uniform circular motion
Ishaq
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask