<< Chapter < Page Chapter >> Page >

Calculating the mass of a pion

Taking the range of the strong nuclear force to be about 1 fermi ( 10 15 m size 12{"10" rSup { size 8{ - "15"} } m} {} ), calculate the approximate mass of the pion carrying the force, assuming it moves at nearly the speed of light.

Strategy

The calculation is approximate because of the assumptions made about the range of the force and the speed of the pion, but also because a more accurate calculation would require the sophisticated mathematics of quantum mechanics. Here, we use the Heisenberg uncertainty principle in the simple form stated above, as developed in Probability: The Heisenberg Uncertainty Principle . First, we must calculate the time Δ t size 12{Δt} {} that the pion exists, given that the distance it travels at nearly the speed of light is about 1 fermi. Then, the Heisenberg uncertainty principle can be solved for the energy Δ E size 12{ΔE} {} , and from that the mass of the pion can be determined. We will use the units of MeV / c 2 size 12{"MeV"/c rSup { size 8{2} } } {} for mass, which are convenient since we are often considering converting mass to energy and vice versa.

Solution

The distance the pion travels is d c Δ t , and so the time during which it exists is approximately

Δ t d c = 10 15 m 3 . 0 × 10 8 m/s 3.3 × 10 24 s. alignl { stack { size 12{Δt approx { {d} over {c} } = { {"10" rSup { size 8{ - "15"} } `m} over {3 "." 0 times "10" rSup { size 8{8} } `"m/s"} } } {} #" " approx 3 "." 3 times "10" rSup { size 8{ - "24"} } `s "." {} } } {}

Now, solving the Heisenberg uncertainty principle for Δ E size 12{ΔE} {} gives

Δ E h 4 π Δ t 6 . 63 × 10 34 J s 3 . 3 × 10 24 s size 12{ΔE approx { {h} over {4πΔt} } approx { {6 "." "63" times "10" rSup { size 8{ - "34"} } `J cdot s} over {4π left (3 "." 3 times "10" rSup { size 8{ - "24"} } `s right )} } } {} .

Solving this and converting the energy to MeV gives

Δ E 1 . 6 × 10 11 J 1 MeV 1 . 6 × 10 13 J = 100 MeV size 12{ΔE approx left (1 "." 6 times "10" rSup { size 8{ - "11"} } `J right ) { {1`"MeV"} over {1 "." 6 times "10" rSup { size 8{ - "13"} } `J} } ="100"`"MeV"} {} .

Mass is related to energy by Δ E = mc 2 size 12{ΔE= ital "mc" rSup { size 8{2} } } {} , so that the mass of the pion is m = Δ E / c 2 size 12{m=ΔE/c rSup { size 8{2} } } {} , or

m 100 MeV/ c 2 size 12{m approx "100"`"MeV/"c rSup { size 8{2} } } {} .

Discussion

This is about 200 times the mass of an electron and about one-tenth the mass of a nucleon. No such particles were known at the time Yukawa made his bold proposal.

Got questions? Get instant answers now!

Yukawa’s proposal of particle exchange as the method of force transfer is intriguing. But how can we verify his proposal if we cannot observe the virtual pion directly? If sufficient energy is in a nucleus, it would be possible to free the pion—that is, to create its mass from external energy input. This can be accomplished by collisions of energetic particles with nuclei, but energies greater than 100 MeV are required to conserve both energy and momentum. In 1947, pions were observed in cosmic-ray experiments, which were designed to supply a small flux of high-energy protons that may collide with nuclei. Soon afterward, accelerators of sufficient energy were creating pions in the laboratory under controlled conditions. Three pions were discovered, two with charge and one neutral, and given the symbols π + , π , and π 0 size 12{π rSup { size 8{+{}} } ,`π rSup { size 8{ - {}} } ,`"and "`π rSup { size 8{0} } } {} , respectively. The masses of π + size 12{π rSup { size 8{+{}} } } {} and π size 12{π rSup { size 8{ - {}} } } {} are identical at 139 . 6 MeV/ c 2 size 12{"139" "." 6`"MeV/"c rSup { size 8{2} } } {} , whereas π 0 size 12{ π rSup { size 8{0} } } {} has a mass of 135 . 0 MeV/ c 2 size 12{"135" "." 0`"MeV/"c rSup { size 8{2} } } {} . These masses are close to the predicted value of 100 MeV/ c 2 size 12{"100"`"MeV/"c rSup { size 8{2} } } {} and, since they are intermediate between electron and nucleon masses, the particles are given the name meson    (now an entire class of particles, as we shall see in Particles, Patterns, and Conservation Laws ).

The pions, or π size 12{π} {} -mesons as they are also called, have masses close to those predicted and feel the strong nuclear force. Another previously unknown particle, now called the muon, was discovered during cosmic-ray experiments in 1936 (one of its discoverers, Seth Neddermeyer, also originated the idea of implosion for plutonium bombs). Since the mass of a muon is around 106 MeV/ c 2 size 12{"106"`"MeV/"c rSup { size 8{2} } } {} , at first it was thought to be the particle predicted by Yukawa. But it was soon realized that muons do not feel the strong nuclear force and could not be Yukawa’s particle. Their role was unknown, causing the respected physicist I. I. Rabi to comment, “Who ordered that?” This remains a valid question today. We have discovered hundreds of subatomic particles; the roles of some are only partially understood. But there are various patterns and relations to forces that have led to profound insights into nature’s secrets.

Summary

  • Yukawa’s idea of virtual particle exchange as the carrier of forces is crucial, with virtual particles being formed in temporary violation of the conservation of mass-energy as allowed by the Heisenberg uncertainty principle.

Problems&Exercises

A virtual particle having an approximate mass of 10 14 GeV/ c 2 size 12{"10" rSup { size 8{"14"} } `"GeV/"c rSup { size 8{2} } } {} may be associated with the unification of the strong and electroweak forces. For what length of time could this virtual particle exist (in temporary violation of the conservation of mass-energy as allowed by the Heisenberg uncertainty principle)?

3 × 10 39 s size 12{3 times "10" rSup { size 8{ - "39"} } `s} {}

Got questions? Get instant answers now!

Calculate the mass in GeV/ c 2 size 12{"GeV/"c rSup { size 8{2} } } {} of a virtual carrier particle that has a range limited to 10 30 size 12{"10" rSup { size 8{ - "30"} } } {} m by the Heisenberg uncertainty principle. Such a particle might be involved in the unification of the strong and electroweak forces.

Got questions? Get instant answers now!

Another component of the strong nuclear force is transmitted by the exchange of virtual K -mesons. Taking K -mesons to have an average mass of 495 MeV/ c 2 size 12{"495"`"MeV/"c rSup { size 8{2} } } {} , what is the approximate range of this component of the strong force?

1 . 99 × 10 16 m ( 0 . 2 fm ) size 12{1 "." "99" times "10" rSup { size 8{ - "16"} } `m` \( 0 "." 2`"fm" \) } {}

Got questions? Get instant answers now!

Questions & Answers

example ofchange of state of the body in the effectof heat
Abiodun Reply
what is normal force?
Neyaz Reply
the force that pushes upward on us. the force that opposes gravity
clifford
upthrust of air
Abdikadir
Newton's 3rd law. the force of the ground (earth) that pushes back on gravity, keeping us on the ground instead of sinking into it.
clifford
I really need lots of questions on frictional force
Ogboru Reply
Questions or answers?
Shii
I can help answering what I can
Shii
does friction also need some force to perform?
Mohit
no friction is a force just like the gravitational force
clifford
yeah but u can't apply friction anywhere else like other forces
Mohit
I don't understand that question. friction does work alongside other forces based on the situation.
clifford
eg. when walking there are two forces acting on us gravitational and frictional force. friction helps us move forward and gravity keeps us on the ground
clifford
friction is a contact force. Two surfaces are necessary for the force to work.
clifford
hope this helped
clifford
the friction force which oppose while it contact with surrounding. there are two kind of friction. slidding and rolling friction.
Neyaz
Two unequal masses M1 and M2 are connected by a string of tension T on a plane,find the acceleration and tension in the string
Ogboru
derive the equation
Ogboru
What is physics?
Jeuloriz Reply
physics is a branch of science in which we are dealing with the knowledge of our physical things. macroscopic as well as microscopic. we are going look inside the univers with the help of physics. you can learn nature with the help of physics. so many branches of physics you have to learn physics.
vijay
What are quarks?
Breanna Reply
6 type of quarks
Neyaz
what is candela
Akani Reply
Candela is the unit for the measurement of light intensity.
Osei
any one can prove that 1hrpower= 746 watt
Neyaz Reply
Newton second is the unit of ...............?
Neyaz
Impulse and momentum
Fauzia
force×time and mass× velocity
vijay
Good
Neyaz
What is the simple harmonic motion?
Fauzia Reply
oscillatory motion under a retarding force proportional to the amount of displacement from an equilibrium position
Yuri
Straight out of google, you could do that to, I suppose.
Yuri
*too
Yuri
ok
Fauzia
Oscillatory motion under a regarding force proportional to the amount of displacement from an equilibrium position
Neyaz
examples of work done by load of gravity
Maureen Reply
What is ehrenfest theorem?
Fauzia Reply
You can look it up, faster and more reliable answer.
Yuri
That isn't a question to ask on a forum and I also have no idea what that is.
Yuri
what is the work done by gravity on the load 87kj,11.684m,mass xkg[g=19m/s
Maureen
What is law of mass action?
Fauzia Reply
rate of chemical reactions is proportional to concentration of reactants ...
muhammad
ok thanks
Fauzia
what is lenses
Ndobe Reply
lenses are two types
Fauzia
concave and convex
muhammad
right
Fauzia
speed of light in space
Vikash Reply
in vacuum speed of light is 3×10^8 m/s
vijay
ok
Vikash
2.99×10^8m/s
Umair
2.8820^8m/s
Muhammed
which is correct answer
Vikash
he is correct but we can round up in simple terms
vijay
3×10^8m/s
vijay
is it correct
Fauzia
I mean 3*10^8 m/s ok
vijay
299792458 meter per second
babar
3*10^8m/s
Neyaz
how many Maxwell relations in thermodynamics
vijay
how we can do prove them?
vijay
What is second law of thermodynamics?
Neyaz
please who has a detailed solution to the first two professional application questions under conservation of momentum
Kwaku Reply
I want to know more about pressure
Osei
I can help
Emeh
okay go on
True
I mean on pressure
Emeh
definition of Pressure
John
it is the force per unit area of a substance.S.I unit is Pascal 1pascal is defined as 1N acting on 1m² area i.e 1pa=1N/m²
Emeh
pls explain Doppler effect
Emmex
solve this an inverted differential manometer containing oil specific gravity 0.9 and manometer reading is 400mm find the difference of pressure
Abayomi Reply
Practice Key Terms 3

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask