<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define nuclear fusion.
  • Discuss processes to achieve practical fusion energy generation.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 1.C.4.1 The student is able to articulate the reasons that the theory of conservation of mass was replaced by the theory of conservation of mass-energy. (S.P. 6.3)
  • 4.C.4.1 The student is able to apply mathematical routines to describe the relationship between mass and energy and apply this concept across domains of scale. (S.P. 2.2, 2.3, 7.2)
  • 5.B.11.1 The student is able to apply conservation of mass and conservation of energy concepts to a natural phenomenon and use the equation E = m c 2 to make a related calculation. (S.P. 2.2, 7.2)
  • 5.G.1.1 The student is able to apply conservation of nucleon number and conservation of electric charge to make predictions about nuclear reactions and decays such as fission, fusion, alpha decay, beta decay, or gamma decay. (S.P. 6.4)

While basking in the warmth of the summer sun, a student reads of the latest breakthrough in achieving sustained thermonuclear power and vaguely recalls hearing about the cold fusion controversy. The three are connected. The Sun's energy is produced by nuclear fusion (see [link] ). Thermonuclear power is the name given to the use of controlled nuclear fusion as an energy source. While research in the area of thermonuclear power is progressing, high temperatures and containment difficulties remain. The cold fusion controversy centered around unsubstantiated claims of practical fusion power at room temperatures.

This figure shows Sun rays piercing clouds to illuminate a natural scene.
The Sun's energy is produced by nuclear fusion. (credit: Spiralz)

Nuclear fusion is a reaction in which two nuclei are combined, or fused , to form a larger nucleus. We know that all nuclei have less mass than the sum of the masses of the protons and neutrons that form them. The missing mass times c 2 size 12{c rSup { size 8{2} } } {} equals the binding energy of the nucleus—the greater the binding energy, the greater the missing mass. We also know that BE / A size 12{"BE"/A} {} , the binding energy per nucleon, is greater for medium-mass nuclei and has a maximum at Fe (iron). This means that if two low-mass nuclei can be fused together to form a larger nucleus, energy can be released. The larger nucleus has a greater binding energy and less mass per nucleon than the two that combined. Thus mass is destroyed in the fusion reaction, and energy is released (see [link] ). On average, fusion of low-mass nuclei releases energy, but the details depend on the actual nuclides involved.

This figure is a graph of atomic mass as horizontal axis versus binding energy per nucleon as vertical axis showing that, as a function of atomic mass, the binding energy per nucleon steeply increases from zero to about 9 M e V per nucleon then, after attaining a peak, slowly decreases to about 8 M e V per nucleon.
Fusion of light nuclei to form medium-mass nuclei destroys mass, because BE / A size 12{"BE"/A} {} is greater for the product nuclei. The larger BE / A size 12{"BE"/A} {} is, the less mass per nucleon, and so mass is converted to energy and released in these fusion reactions.

The major obstruction to fusion is the Coulomb repulsion between nuclei. Since the attractive nuclear force that can fuse nuclei together is short ranged, the repulsion of like positive charges must be overcome to get nuclei close enough to induce fusion. [link] shows an approximate graph of the potential energy between two nuclei as a function of the distance between their centers. The graph is analogous to a hill with a well in its center. A ball rolled from the right must have enough kinetic energy to get over the hump before it falls into the deeper well with a net gain in energy. So it is with fusion. If the nuclei are given enough kinetic energy to overcome the electric potential energy due to repulsion, then they can combine, release energy, and fall into a deep well. One way to accomplish this is to heat fusion fuel to high temperatures so that the kinetic energy of thermal motion is sufficient to get the nuclei together.

Questions & Answers

how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
displacement in easy way.
Mubashir Reply
what is the Amount
Yasmin Reply
Of what? A bit of something
Antonio
binding energy per nucleon
Poonam Reply
why God created humanity
Manuel Reply
Because HE needs someone to dominate the earth (Gen. 1:26)
Olorunfemi
Is the object in a conductor or an insulator? Justify your answer. whats the answer to this question? pls need help figure is given above
Jun Reply
how do i calculate the pressure on the base of a deposit if the deposit is moving with a linear aceleration
ximena Reply
why electromagnetic induction is not used in room heater ?
Gopi Reply
What is position?
Amoah Reply
What is law of gravition
sushil Reply
what is magnetism
Sandeep Reply
what is charging by induction
Sandeep Reply
what is electric field lines
Sandeep Reply
law of gravitation
Rakesh Reply
Suppose a 0.250-kg ball is thrown at 15.0 m/s to a motionless person standing on ice who catches it with an outstretched arm as shown in [link] . (b) What is his angular velocity if each arm is 5.00 kg? You may treat the ball as a point mass and treat the person's arms as uniform rods (each has a length of 0.900 m) and the rest of his body as a uniform cylinder of radius 0.180 m. Neglect the effect of the ball on his center of mass so that his center of mass remains in his geometrical center.
Varun Reply
Practice Key Terms 6

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask