<< Chapter < Page Chapter >> Page >
A black and white image of scientist J. J. Thomson wearing a coat and oval shaped spectacles.
J. J. Thomson (credit: www.firstworldwar.com, via Wikimedia Commons)
A diagram of the glass apparatus that was used to discover the electron in J. J. Thompson’s experiment.
Diagram of Thomson’s CRT. (credit: Kurzon, Wikimedia Commons)
Image of a cathode ray tube on x axis between two inverted L shaped north and south pole magnets on y axis, with z axis as a wire carrying high voltage supply to the charging plates inside the C R T. Zoomed image of the charging plate area inside the C R T showing the intersection of magnetic field between the poles in red lines towards south pole on the y axis along with an electron beam in green color line with velocity v toward right on the x axis.
This schematic shows the electron beam in a CRT passing through crossed electric and magnetic fields and causing phosphor to glow when striking the end of the tube.

To see how the amount of deflection is used to calculate q e / m e size 12{q rSub { size 8{e} } /m rSub { size 8{e} } } {} , note that the deflection is proportional to the electric force on the electron:

F = q e E . size 12{F=q rSub { size 8{e} } E} {}

But the vertical deflection is also related to the electron’s mass, since the electron’s acceleration is

a = F m e . size 12{a= { {F} over {m rSub { size 8{e} } } } } {}

The value of F size 12{F} {} is not known, since q e size 12{q rSub { size 8{e} } } {} was not yet known. Substituting the expression for electric force into the expression for acceleration yields

a = F m e = q e E m e . size 12{a= { {F} over {m rSub { size 8{e} } } } = { {q rSub { size 8{e} } E} over {m rSub { size 8{e} } } } "." } {}

Gathering terms, we have

q e m e = a E . size 12{ { {q rSub { size 8{e} } } over {m rSub { size 8{e} } } } = { {a} over {E} } } {}

The deflection is analyzed to get a size 12{a} {} , and E size 12{E} {} is determined from the applied voltage and distance between the plates; thus, q e m e size 12{ { {q rSub { size 8{e} } } over {m rSub { size 8{e} } } } } {} can be determined. With the velocity known, another measurement of q e m e size 12{ { {q rSub { size 8{e} } } over {m rSub { size 8{e} } } } } {} can be obtained by bending the beam of electrons with the magnetic field. Since F mag = q e vB = m e a size 12{F rSub { size 8{"mag"} } =q rSub { size 8{e} } ital "vB"=m rSub { size 8{e} } a} {} , we have q e / m e = a / vB size 12{q rSub { size 8{e} } /m rSub { size 8{e} } =a/ ital "vB"} {} . Consistent results are obtained using magnetic deflection.

What is so important about q e / m e size 12{q rSub { size 8{e} } /m rSub { size 8{e} } } {} , the ratio of the electron’s charge to its mass? The value obtained is

q e m e = 1 . 76 × 10 11 C/kg (electron). size 12{ { {q rSub { size 8{e} } } over {m rSub { size 8{e} } } } = - 1 "." "76" times "10" rSup { size 8{"11"} } " C/kg"} {}

This is a huge number, as Thomson realized, and it implies that the electron has a very small mass. It was known from electroplating that about 10 8 C/kg size 12{"10" rSup { size 8{8} } " C/kg"} {} is needed to plate a material, a factor of about 1000 less than the charge per kilogram of electrons. Thomson went on to do the same experiment for positively charged hydrogen ions (now known to be bare protons) and found a charge per kilogram about 1000 times smaller than that for the electron, implying that the proton is about 1000 times more massive than the electron. Today, we know more precisely that

q p m p = 9.58 × 10 7 C/kg (proton), size 12{ { {q rSub { size 8{p} } } over {m rSub { size 8{p} } } } =9 "." "57" times "10" rSup { size 8{7} } " C/kg"} {}

where q p size 12{q rSub { size 8{p} } } {} is the charge of the proton and m p size 12{m rSub { size 8{p} } } {} is its mass. This ratio (to four significant figures) is 1836 times less charge per kilogram than for the electron. Since the charges of electrons and protons are equal in magnitude, this implies m p = 1836 m e size 12{m rSub { size 8{p} } ="1836"m rSub { size 8{e} } } {} .

Thomson performed a variety of experiments using differing gases in discharge tubes and employing other methods, such as the photoelectric effect, for freeing electrons from atoms. He always found the same properties for the electron, proving it to be an independent particle. For his work, the important pieces of which he began to publish in 1897, Thomson was awarded the 1906 Nobel Prize in Physics. In retrospect, it is difficult to appreciate how astonishing it was to find that the atom has a substructure. Thomson himself said, “It was only when I was convinced that the experiment left no escape from it that I published my belief in the existence of bodies smaller than atoms.”

Thomson attempted to measure the charge of individual electrons, but his method could determine its charge only to the order of magnitude expected.

Since Faraday’s experiments with electroplating in the 1830s, it had been known that about 100,000 C per mole was needed to plate singly ionized ions. Dividing this by the number of ions per mole (that is, by Avogadro’s number), which was approximately known, the charge per ion was calculated to be about 1 . 6 × 10 19 C size 12{1 "." 6 times "10" rSup { size 8{ - "19"} } " C"} {} , close to the actual value.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask