<< Chapter < Page Chapter >> Page >

Solution

Because v tot size 12{v rSub { size 8{ bold "tot"} } } {} is the vector sum of the v w and v p , its x - and y -components are the sums of the x - and y -components of the wind and plane velocities. Note that the plane only has vertical component of velocity so v p x = 0 and v p y = v p . That is,

v tot x = v w x size 12{v rSub { size 8{"tot"x} } =v rSub { size 8{wx} } } {}

and

v tot y = v w y + v p . size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{wx} } +v rSub { size 8{p} } "."} {}

We can use the first of these two equations to find v w x size 12{v rSub { size 8{ ital "wx"} } } {} :

v w y = v tot x = v tot cos 110º . size 12{v rSub { size 8{wx} } =v rSub { size 8{"tot"x} } =v rSub { size 8{"tot"} } "cos110" rSup { size 8{o} } "."} {}

Because v tot = 38 . 0 m / s size 12{v rSub { size 8{ ital "tot"} } ="38" "." 0m/s} {} and cos 110º = 0.342 size 12{"cos""110º""=""-""0.342"} {} we have

v w y = ( 38.0 m/s ) ( –0.342 ) = –13 m/s.

The minus sign indicates motion west which is consistent with the diagram.

Now, to find v w y size 12{v rSub { size 8{ ital "wy"} } } {} we note that

v tot y = v w y + v p size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{wx} } +v rSub { size 8{p} } } {}

Here v tot y = v tot sin 110º size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{"tot"} }  = v rSub { size 8{"tot"} }  "sin 110º"} {} ; thus,

v w y = ( 38 . 0 m/s ) ( 0 . 940 ) 45 . 0 m/s = 9 . 29 m/s. size 12{v rSub { size 8{wy} } = \( "38" "." 0" m/s" \) \( 0 "." "940" \) - "45" "." 0" m/s"= - 9 "." "29"" m/s."} {}

This minus sign indicates motion south which is consistent with the diagram.

Now that the perpendicular components of the wind velocity v w x size 12{v rSub { size 8{wx} } } {} and v w y size 12{v rSub { size 8{wy} } } {} are known, we can find the magnitude and direction of v w size 12{v rSub { size 8{w} } } {} . First, the magnitude is

v w = v w x 2 + v w y 2 = ( 13 . 0 m/s ) 2 + ( 9 . 29 m/s ) 2

so that

v w = 16 . 0 m/s . size 12{v rSub { size 8{w} } ="16" "." 0" m/s."} {}

The direction is:

θ = tan 1 ( v w y / v w x ) = tan 1 ( 9 . 29 / 13 . 0 ) size 12{θ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{wy} } /v rSub { size 8{wx} } \) ="tan" rSup { size 8{ - 1} } \( - 9 "." "29"/ - "13" "." 0 \) } {}

giving

θ = 35 . . size 12{θ="35" "." 6º"."} {}

Discussion

The wind’s speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as seen in [link] . Because the plane is fighting a strong combination of crosswind and head-wind, it ends up with a total velocity significantly less than its velocity relative to the air mass as well as heading in a different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem solving easier. For example, in projectile motion we always use a coordinate system with one axis parallel to gravity.

Relative velocities and classical relativity

When adding velocities, we have been careful to specify that the velocity is relative to some reference frame . These velocities are called relative velocities . For example, the velocity of an airplane relative to an air mass is different from its velocity relative to the ground. Both are quite different from the velocity of an airplane relative to its passengers (which should be close to zero). Relative velocities are one aspect of relativity    , which is defined to be the study of how different observers moving relative to each other measure the same phenomenon.

Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest physicist of the 20th century. Einstein revolutionized our view of nature with his modern theory of relativity, which we shall study in later chapters. The relative velocities in this section are actually aspects of classical relativity, first discussed correctly by Galileo and Isaac Newton. Classical relativity is limited to situations where speeds are less than about 1% of the speed of light—that is, less than 3,000 km/s size 12{"3,000 km/s"} {} . Most things we encounter in daily life move slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose a sailor at the top of a mast on a moving ship drops his binoculars. Where will it hit the deck? Will it hit at the base of the mast, or will it hit behind the mast because the ship is moving forward? The answer is that if air resistance is negligible, the binoculars will hit at the base of the mast at a point directly below its point of release. Now let us consider what two different observers see when the binoculars drop. One observer is on the ship and the other on shore. The binoculars have no horizontal velocity relative to the observer on the ship, and so he sees them fall straight down the mast. (See [link] .) To the observer on shore, the binoculars and the ship have the same horizontal velocity, so both move the same distance forward while the binoculars are falling. This observer sees the curved path shown in [link] . Although the paths look different to the different observers, each sees the same result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial to correctly specify the velocities relative to the observer.

Questions & Answers

explain how a body becomes electrically charged based on the presence of charged particles
Kym Reply
induction
babar
induction
DEMGUE
definitely by induction
Raymond
induction
Raymond
induction
Shah
induction
Korodhso
please why does a needle sinks in water
DEMGUE
induction
Korodhso
induction
Auwal
what are the calculations of Newton's third law of motiow
Murtala Reply
what is dark matter
apex Reply
(in some cosmological theories) non-luminous material which is postulated to exist in space and which could take either of two forms: weakly interacting particles ( cold dark matter ) or high-energy randomly moving particles created soon after the Big Bang ( hot dark matter ).
Usman
if the mass of a trolley is 0.1kg. calculate the weight of plasticine that is needed to compensate friction. (take g=10m/s and u=0.2)
Declan Reply
what is a galaxy
Maduka Reply
what isflow rate of volume
Abcd Reply
flow rate is the volume of fluid which passes per unit time;
Rev
flow rate or discharge represnts the flow passing in unit volume per unit time
bhat
When two charges q1 and q2 are 6 and 5 coulomb what is ratio of force
Mian Reply
When reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel rims. Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the bicycle’s frame?
bimo Reply
is that the answer
nehemiah
why is it proportional
nehemiah Reply
i don't know
Adah
y
nehemiah
what are the relationship between distance and displacement
Usman Reply
They are interchangeable.
Shii
Distance is scalar, displacement is vector because it must involve a direction as well as a magnitude. distance is the measurement of where you are and where you were displacement is a measurement of the change in position
Shii
Thanks a lot
Usman
I'm beginner in physics so I can't reason why v=u+at change to v2=u2+2as and vice versa
Usman
what is kinematics
praveen
kinematics is study of motion without considering the causes of the motion
Theo
The study of motion without considering the cause 0f it
Usman
why electrons close to the nucleus have less energy and why do electrons far from the nucleus have more energy
Theo
thank you frds
praveen
plz what is the third law of thermodynamics
Chidera Reply
third law of thermodynamics states that at 0k the particles will collalse its also known as death of universe it was framed at that time when it waa nt posible to reach 0k but it was proved wrong
bhat
I have not try that experiment but I think it will magnet....
Rev Reply
Hey Rev. it will
Jeff
I do think so, it will
Chidera
yes it will
lasisi
If a magnet is in a pool of water, would it be able to have a magnetic field?.
Stella Reply
yes Stella it would
Jeff
formula for electric current
Chizzy Reply
what is that about pleace
Fokoua
what are you given?
Kudzy
what is current
Fokoua
I=q/t
saifullahi
Current is the flow of electric charge per unit time.
saifullahi
What are semi conductors
saifullahi
materials that allows charge to flow at varying conditions, temperature for instance.
Mokua
these are materials which have electrical conductivity greater than the insulators but less than metal, in these materials energy band Gap is very narrow as compared to insulators
Sunil
materials that allows charge to flow at varying conditions, temperature for instance.
Obasi
wao so awesome
Fokoua
At what point in the oscillation of beam will a body leave it?
Atambiri
what is gravitational force
Adah
what is meant by the term law
Fahd Reply
Practice Key Terms 5

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask