# 24.3 The electromagnetic spectrum  (Page 5/33)

 Page 5 / 33

Astronomers and astrophysicists collect signals from outer space using electromagnetic waves. A common problem for astrophysicists is the “pollution” from electromagnetic radiation pervading our surroundings from communication systems in general. Even everyday gadgets like our car keys having the facility to lock car doors remotely and being able to turn TVs on and off using remotes involve radio-wave frequencies. In order to prevent interference between all these electromagnetic signals, strict regulations are drawn up for different organizations to utilize different radio frequency bands.

One reason why we are sometimes asked to switch off our mobile phones (operating in the range of 1.9 GHz) on airplanes and in hospitals is that important communications or medical equipment often uses similar radio frequencies and their operation can be affected by frequencies used in the communication devices.

For example, radio waves used in magnetic resonance imaging (MRI) have frequencies on the order of 100 MHz, although this varies significantly depending on the strength of the magnetic field used and the nuclear type being scanned. MRI is an important medical imaging and research tool, producing highly detailed two- and three-dimensional images. Radio waves are broadcast, absorbed, and reemitted in a resonance process that is sensitive to the density of nuclei (usually protons or hydrogen nuclei).

The wavelength of 100-MHz radio waves is 3 m, yet using the sensitivity of the resonant frequency to the magnetic field strength, details smaller than a millimeter can be imaged. This is a good example of an exception to a rule of thumb (in this case, the rubric that details much smaller than the probe’s wavelength cannot be detected). The intensity of the radio waves used in MRI presents little or no hazard to human health.

## Microwaves

Microwaves are the highest-frequency electromagnetic waves that can be produced by currents in macroscopic circuits and devices. Microwave frequencies range from about ${\text{10}}^{9}\phantom{\rule{0.25em}{0ex}}\text{Hz}$ to the highest practical $\text{LC}$ resonance at nearly ${\text{10}}^{\text{12}}\phantom{\rule{0.25em}{0ex}}\text{Hz}$ . Since they have high frequencies, their wavelengths are short compared with those of other radio waves—hence the name “microwave.”

Microwaves can also be produced by atoms and molecules. They are, for example, a component of electromagnetic radiation generated by thermal agitation    . The thermal motion of atoms and molecules in any object at a temperature above absolute zero causes them to emit and absorb radiation.

Since it is possible to carry more information per unit time on high frequencies, microwaves are quite suitable for communications. Most satellite-transmitted information is carried on microwaves, as are land-based long-distance transmissions. A clear line of sight between transmitter and receiver is needed because of the short wavelengths involved.

Radar is a common application of microwaves that was first developed in World War II. By detecting and timing microwave echoes, radar systems can determine the distance to objects as diverse as clouds and aircraft. A Doppler shift in the radar echo can be used to determine the speed of a car or the intensity of a rainstorm. Sophisticated radar systems are used to map the Earth and other planets, with a resolution limited by wavelength. (See [link] .) The shorter the wavelength of any probe, the smaller the detail it is possible to observe.

Why is there no 2nd harmonic in the classical electron orbit?
how to reform magnet after been demagneted
A petrol engine has a output of 20 kilowatts and uses 4.5 kg of fuel for each hour of running. The energy given out when 1 kg of petrol is burnt is 4.8 × 10 to the power of 7 Joules. a) What is the energy output of the engine every hour? b) What is the energy input of the engine every hour?
what is the error during taking work done of a body..
what kind of error do you think? and work is held by which force?
Daniela
I am now in this group
smart
theory,laws,principles and what-a-view are not defined. why? you
A simple pendulum is used in a physics laboratory experiment to obtain an experimental value for the gravitational acceleration, g . A student measures the length of the pendulum to be 0.510 meters, displaces it 10 o from the equilibrium position, and releases it. Using a s
so what question are you passing across... sir?
Olalekan
Two masses of 2 kg and 4 kg are held with a compressed spring between them. If the masses are released, the spring will push them away from each other. If the smaller mass moves off with a velocity of 6m/s, what is the stored energy in the spring when it is compressed?
54 joule
babar
how?
rakesh
Reduce that two body problem into one body problem. Apply potential and k. E formula to get total energy of the system
rakesh
i dont think dere is any potential energy... by d virtue of no height present
Olalekan
there is compressed energy,dats only potential energy na?
rakesh
yes.. but... how will u approach that question without The Height in the question?
Olalekan
Can you explain how you get 54J?
Emmanuel
Because mine is 36J
Emmanuel
got 36J too
Douglas
OK the answer is 54J Babar is correct
Emmanuel
Conservation of Momentum
Emmanuel
woow i see.. can you give the formula for this
joshua
Two masses of 2 kg and 4 kg are held with a compressed spring between them. If the masses are released, the spring will push them away from each other. If the smaller mass moves off with a velocity of 6m/s, what is the stored energy in the spring when it is compressed? Asume there is no external force.
Emmanuel
Inuwa
By using the Quotient Rule dy/dx = 3y/(x +y)²
Emmanuel
3y/(x+y)²
Emmanuel
may be by using MC^2=MC^2 and Total energy=kinetic energy +potential energy so 1st find kinetic energy and den find potential energy which is stored energy
rakesh
i think i m correct
rakesh
But how?
Emmanuel
3y/(x+y)²
Douglas
what's the big bang?
yes what is it?
LamaBbake
it is the explanation of how the universe began
Zainab
yes
Ana
explain
Chinagorom
in
Chinagorom
it is a theory on how the universe began. to understand more I would suggest researching the topic online.
david
thanks guys
kwame
if a force of 12N is applied to load of 200g what us the work done
We can seek accelation first
Nancy
we are given f=12 m=200g which is 0.2kg now from 2nd law of newton a= f/m=60m/s*2 work done=force applied x displacement cos (theta) w= 12x60 =720nm/s*2
Mudang
this very interesting question very complicated for me, í need urgent help. 1,two buses A and B travel along the same road in the same direction from Harper city (asume They both started from the same point) to Monrovia. if bus A maintains a Speedy of 60km/h and bus B a Speedy of 75km/h, how many
mohammed
hours Will it take bus B to overtake bus A assuming bus B starts One hour after bus A started. what is the distance travelled by the buses when They meet?.
mohammed
pls í need help
mohammed
4000 work is done
Ana
speed=distance /time distance=speed/time
Ana
now use this formula
Ana
Julius
great Mudang
Kossi
babar
hey mudang there is a product of force and acceleration not force and displacement
babar
@Mohammed answer is 0.8hours or 48mins
Douglas
nice
A.d
its not possible
Olalekan
í want the working procedure
mohammed
the answer is given but how Will One arrive at it. the answers are 4hours and 300m.
mohammed
physics is the science that studies the non living nature
ancient greek language physis = nature
isidor
what is phyacs
if i am going to start studying physics where should i start?
I think from kinematics
Nancy
You can find physics books at the library or online. That's how I started.
Chelsea
And yes, kinematics is usually where you can begin.
Chelsea
study basic algebra and calculus and can start from classical mechanics
Mudang
yes think so but dimension is the best starting point
Obed
3 formula's of equations of motion
vf=vi+at........1 s=vit+1/2(at)2 vf2=vi2+2as
Ana
benjamin
those are the three .. what you wanna solve ?
Nihrantz
For first equation simply integrate formula of acceleration in the limit v and u
Tripti
For second itegrate velocity formula by ising first equation
Tripti
similarly for 3 one integrate acceleration again by multiplying and dividing term ds
Tripti
any methods can take to solve this eqtions
a=vf-vi/t vf-vi=at vf=vi+at......1
Ana
suppose a body starts with an initial velocity vi and travels with uniform acceleration a for a period of time t.the distance covered by a body in this time is "s" and its final velocity becomes vf
Ana
what is the question dear
Zeeshan
average velocity=(vi+vf)/2 distance travelled=average velocity ×time therefore s=vi+vf/2×t from the first equation of motion ,we have vf =vi+at s=[vi+(vi+at)]/2×t s=(2vi+at)/2×t s=bit+1/2at2
Ana
find the distance
Ana
how
Zeeshan
Two speakers are arranged so that sound waves with the same frequency are produced and radiated through a room. An interference pattern is created. Calculate the distance between the two speakers?
How can we calculate without any information?
Amir
I think the formulae used for this question is lambda=(ax)/D
Amir