<< Chapter < Page Chapter >> Page >

Extremely low frequency (ELF) radio waves of about 1 kHz are used to communicate with submerged submarines. The ability of radio waves to penetrate salt water is related to their wavelength (much like ultrasound penetrating tissue)—the longer the wavelength, the farther they penetrate. Since salt water is a good conductor, radio waves are strongly absorbed by it, and very long wavelengths are needed to reach a submarine under the surface. (See [link] .)

The picture of a submarine under water is shown. The submarine is shown to receive extremely low frequency signals shown as a curvy line from the ocean surface to the submarine in the ocean depth.
Very long wavelength radio waves are needed to reach this submarine, requiring extremely low frequency signals (ELF). Shorter wavelengths do not penetrate to any significant depth.

AM radio waves are used to carry commercial radio signals in the frequency range from 540 to 1600 kHz. The abbreviation AM stands for amplitude modulation , which is the method for placing information on these waves. (See [link] .) A carrier wave    having the basic frequency of the radio station, say 1530 kHz, is varied or modulated in amplitude by an audio signal. The resulting wave has a constant frequency, but a varying amplitude.

A radio receiver tuned to have the same resonant frequency as the carrier wave can pick up the signal, while rejecting the many other frequencies impinging on its antenna. The receiver’s circuitry is designed to respond to variations in amplitude of the carrier wave to replicate the original audio signal. That audio signal is amplified to drive a speaker or perhaps to be recorded.

Part a of the diagram shows a carrier wave along the horizontal axis. The wave is shown to have a high frequency as the vibrations are closely spaced. The wave has constant amplitude represented by uniform height of crest and trough. Part b of the diagram shows an audio wave with a lower frequency. The wave is on the upper side of horizontal axis. The amplitude of the wave is not uniform. It has an initial small rise and fall followed by a steep rise and a gradual fall in the wave. Part c of the diagram shows the amplitude modulated wave. It is the resultant wave obtained by mixing of the waves in part a and part b. The amplitude of the resultant wave is non uniform, similar to the audio wave. The frequency of the amplitude modulated wave is equal to the frequency of the carrier wave. The wave spreads on both sides of the horizontal axis.
Amplitude modulation for AM radio. (a) A carrier wave at the station’s basic frequency. (b) An audio signal at much lower audible frequencies. (c) The amplitude of the carrier is modulated by the audio signal without changing its basic frequency.

Fm radio waves

FM radio waves are also used for commercial radio transmission, but in the frequency range of 88 to 108 MHz. FM stands for frequency modulation , another method of carrying information. (See [link] .) Here a carrier wave having the basic frequency of the radio station, perhaps 105.1 MHz, is modulated in frequency by the audio signal, producing a wave of constant amplitude but varying frequency.

Part a of the diagram shows a carrier wave along the horizontal axis. The wave is shown to have a high frequency as the vibrations are closely spaced. The wave has constant amplitude represented by uniform height of crest and trough. Part b of the diagram shows an audio wave with a lower frequency as shown by widely spaced vibrations. The wave has constant amplitude, represented by uniform length of crest and trough. Part c shows the frequency modulated wave obtained from waves in part a and part b. The amplitude of the resultant wave is similar to the source waves but the frequency varies. Frequency maxima are shown as closely spaced vibrations and frequency minima are shown as widely spaced vibrations. These maxima and minima are shown to alternate.
Frequency modulation for FM radio. (a) A carrier wave at the station’s basic frequency. (b) An audio signal at much lower audible frequencies. (c) The frequency of the carrier is modulated by the audio signal without changing its amplitude.

Since audible frequencies range up to 20 kHz (or 0.020 MHz) at most, the frequency of the FM radio wave can vary from the carrier by as much as 0.020 MHz. Thus the carrier frequencies of two different radio stations cannot be closer than 0.020 MHz. An FM receiver is tuned to resonate at the carrier frequency and has circuitry that responds to variations in frequency, reproducing the audio information.

FM radio is inherently less subject to noise from stray radio sources than AM radio. The reason is that amplitudes of waves add. So an AM receiver would interpret noise added onto the amplitude of its carrier wave as part of the information. An FM receiver can be made to reject amplitudes other than that of the basic carrier wave and only look for variations in frequency. It is thus easier to reject noise from FM, since noise produces a variation in amplitude.

Questions & Answers

what is the formula of displacement
Mohammed Reply
can some one tell me how v=RW is dimensionally correct?
YAGNAK Reply
ms-1 = m X Hz
babar
What is displacement
Megha Reply
shortest distance b/w two points
bilal
distance+direction
A.d
explain distanace+direction
bilal
the change of postion from one point to another with direction
A.d
if we change thrle direction then displacement is destroy?
bilal
change the direction then?
bilal
what do u mean by i didnt understand bro
A.d
displacement is one dimension...?
bilal
displacement is the total length an object cover from initial to the final with respect to direction as Well as time.
mohammed
thanks
bilal
displacement is the ratio of speed with respect to particular time
Bhautik
shortest distance travel from initial point to final point
ankit
is straight shortest line that connect initial pt with final pt.
Zeleke
what are the differences between vector and scalar quantity
Kabba Reply
vector is assigned to those physical quantity that has both direction and magnitude! example velocity ,scalar just has magnitude example Mass of an object. hope it helps
Mudang
velocity is produce in fan...?
bilal Reply
how many electrons are there in 5 microcouloumb
Obed Reply
can a given total amount of mechanical energy be totally converted into heat energy..if so give example
Muhammad Reply
human running
Emmanuel
what is the fumula for calculating specific heat capacity, fusion,fission and vaporization?
Dohn Reply
Q=cm(∆t)
Emmanuel
Q=cm∆T
Muhammad
what is difference b/w vaporization and evaporation
Muhammad
evaporation is the process of extracting moisture while vaporization is process of becoming a vapor or gas
Emmanuel
From a molecular standpoint they are both cooling processes. Also, you may want to explore states of matter😊 #myTwoCents ~Shi~
Shii
cooling is a similarlity in both process I am confused in difference
Muhammad
1- Evaporation is a process where a liquid change to gas without reaching its boiling point. 2- Vaporization is a process where a liquid change to gas after reaching its boiling point. 3- Sublimation is a process where a solid changes into vapour without passing through a liquid state
Victor
I see. Evaporation is a type of vaporization, that occurs on the surface of a liquid as it changes into the gaseous phase before reaching its boiling point. hope that aids
Shii
vaporisation is cooling process while vaporization is heating process
Emmanuel
I mean to write evaporation is an heating process while vaporization is cooling process
Emmanuel
Yea here are two applications. 1- your wet washed clothes dry under the sun, the water EVAPORATES 2- when u are cooking, it reaches a point where u need to add more water because the water you added previously is getting dried. this is VAPORIZATION. Am not sure which is a cooling or heating process
Victor
vaporization occur only when the evaporation get to level where the above cloud is been (saturated) so cooling take place and started to change to liquid (eg rain fall)
Emmanuel
They are both properties of the same process so they're both cooling
Shii
what about sublimation? cooling or heating process?
Victor
exact
Muhammad
evaporation is the increase in kinetic energy of the liquid which can be gone by adding heat
Emmanuel
so its an heating process
Emmanuel
sublimation is when a solid change to gas
Emmanuel
evaporation is very definitely a cooling process. respectfully@Emmanuel when liquid turns to gas it requires more energy from its surroundings, this energy is in the form of heat, and when heat energy leaves the evaporating liquid it leaves it cooler. Thus, cooling process.
Shii
.
Shii
evaporation is very definitely a cooling process. respectfully@Emmanuel
Shii
kk
Emmanuel
You're right @Shi. I get your point
Victor
eascape velocity on the surface of Earth is 11.2 kms-1 the escape velocity on the surface of another planet of same mass as that of Earth but of 1/4 times of radius of Earth is a5.6kms-1 b11.2 kms-1 c22.4kms-1 d5.6ms-1
Muhammad
Emm.. is that a question? or..
Victor
it is McQ
Muhammad
a)5.6km/s
Alvis
c= Q/cm◇T
A.d
it's answer is 22.4
Muhammad
units...
Shii
vital
Shii
the time period of the artificial satellite is given by ?
raza
Why is there no 2nd harmonic in the classical electron orbit?
Shree Reply
how to reform magnet after been demagneted
Inuwa Reply
A petrol engine has a output of 20 kilowatts and uses 4.5 kg of fuel for each hour of running. The energy given out when 1 kg of petrol is burnt is 4.8 × 10 to the power of 7 Joules. a) What is the energy output of the engine every hour? b) What is the energy input of the engine every hour?
Morris Reply
Issac Newton devised a genius way to calculate changing quantities...
Shii
what is the error during taking work done of a body..
Aliyu Reply
what kind of error do you think? and work is held by which force?
Daniela
I am now in this group
smart
theory,laws,principles and what-a-view are not defined. why? you
Douglas Reply
A simple pendulum is used in a physics laboratory experiment to obtain an experimental value for the gravitational acceleration, g . A student measures the length of the pendulum to be 0.510 meters, displaces it 10 o from the equilibrium position, and releases it. Using a s
Emmanuel Reply
so what question are you passing across... sir?
Olalekan
Two masses of 2 kg and 4 kg are held with a compressed spring between them. If the masses are released, the spring will push them away from each other. If the smaller mass moves off with a velocity of 6m/s, what is the stored energy in the spring when it is compressed?
Emmanuel Reply
54 joule
babar
how?
rakesh
Reduce that two body problem into one body problem. Apply potential and k. E formula to get total energy of the system
rakesh
i dont think dere is any potential energy... by d virtue of no height present
Olalekan
there is compressed energy,dats only potential energy na?
rakesh
yes.. but... how will u approach that question without The Height in the question?
Olalekan
Can you explain how you get 54J?
Emmanuel
Because mine is 36J
Emmanuel
got 36J too
Douglas
OK the answer is 54J Babar is correct
Emmanuel
Conservation of Momentum
Emmanuel
woow i see.. can you give the formula for this
joshua

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask