<< Chapter < Page Chapter >> Page >

Calculating time: a car merges into traffic

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at 2 . 00 m/s 2 size 12{2 "." "00 m/s" rSup { size 8{2} } } {} , how long does it take to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)


Draw a sketch.

A line segment with ends labeled x subs zero equals zero and x = two hundred. Above the line segment, the equation t equals question mark indicates that time is unknown. Three vectors, all pointing in the direction of x equals 200, represent the other knowns and unknowns. They are labeled v sub zero equals ten point zero meters per second, v equals question mark, and a equals two point zero zero meters per second squared.

We are asked to solve for the time t size 12{t} {} . As before, we identify the known quantities in order to choose a convenient physical relationship (that is, an equation with one unknown, t size 12{t} {} ).


1. Identify the knowns and what we want to solve for. We know that v 0 = 10 m/s size 12{v rSub { size 8{0} } ="10 m/s"} {} ; a = 2 . 00 m/s 2 size 12{a=2 "." "00 m/s" rSup { size 8{2} } } {} ; and x = 200 m size 12{x="200 m"} {} .

2. We need to solve for t size 12{t} {} . Choose the best equation. x = x 0 + v 0 t + 1 2 at 2 works best because the only unknown in the equation is the variable t size 12{t} {} for which we need to solve.

3. We will need to rearrange the equation to solve for t size 12{t} {} . In this case, it will be easier to plug in the knowns first.

200 m = 0 m + 10 . 0 m/s t + 1 2 2 . 00 m/s 2 t 2 size 12{"200 m"="0 m"+ left ("10" "." "0 m/s" right )t+ { {1} over {2} } left (2 "." "00 m/s" rSup { size 8{2} } right )t rSup { size 8{2} } } {}

4. Simplify the equation. The units of meters (m) cancel because they are in each term. We can get the units of seconds (s) to cancel by taking t = t s size 12{t=t" s"} {} , where t size 12{t} {} is the magnitude of time and s is the unit. Doing so leaves

200 = 10 t + t 2 . size 12{"200"="10"t+t rSup { size 8{2} } } {}

5. Use the quadratic formula to solve for t size 12{t} {} .

(a) Rearrange the equation to get 0 on one side of the equation.

t 2 + 10 t 200 = 0 size 12{t rSup { size 8{2} } +"10"t - "200"=0} {}

This is a quadratic equation of the form

at 2 + bt + c = 0 ,

where the constants are a = 1 . 00, b = 10 . 0, and c = 200 size 12{a=1 "." "00,"`b="10" "." "0,"`"and"`c= - "200"} {} .

(b) Its solutions are given by the quadratic formula:

t = b ± b 2 4 ac 2 a .

This yields two solutions for t size 12{t} {} , which are

t = 10 . 0 and 20 . 0 . size 12{t="10" "." 0``"and"`` - "20" "." 0} {}

In this case, then, the time is t = t size 12{t=t} {} in seconds, or

t = 10 . 0 s and 20 . 0 s . size 12{t="10" "." 0``s`"and" - "20" "." 0`s} {}

A negative value for time is unreasonable, since it would mean that the event happened 20 s before the motion began. We can discard that solution. Thus,

t = 10 . 0 s . size 12{t="10" "." 0`s} {}


Whenever an equation contains an unknown squared, there will be two solutions. In some problems both solutions are meaningful, but in others, such as the above, only one solution is reasonable. The 10.0 s answer seems reasonable for a typical freeway on-ramp.

Got questions? Get instant answers now!

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and insights into physical relationships. Problem-Solving Basics discusses problem-solving basics and outlines an approach that will help you succeed in this invaluable task.

Making connections: take-home experiment—breaking news

We have been using SI units of meters per second squared to describe some examples of acceleration or deceleration of cars, runners, and trains. To achieve a better feel for these numbers, one can measure the braking deceleration of a car doing a slow (and safe) stop. Recall that, for average acceleration, a - = Δ v / Δ t size 12{ { bar {a}}=Δv/Δt} {} . While traveling in a car, slowly apply the brakes as you come up to a stop sign. Have a passenger note the initial speed in miles per hour and the time taken (in seconds) to stop. From this, calculate the deceleration in miles per hour per second. Convert this to meters per second squared and compare with other decelerations mentioned in this chapter. Calculate the distance traveled in braking.

Questions & Answers

2 forces whose resultant is 100N, are at right angle to each other .if one of them makes an angle of 30 degree with the resultant determine it's magnitude
Victor Reply
50 N... (50 *1.732)N
Plz cheak the ans and give reply..
Is earth is an inertial frame?
Sahim Reply
The abacus (plural abaci or abacuses), also called a counting frame, is a calculating tool that was in use in Europe, China and Russia, centuries before the adoption of the written Hindu–Arabic numeral system
Most welcome
Hey.. I've a question.
Sahim Reply
Is earth inertia frame?
only the center
What is an abucus?
what would be the correct interrogation "what is time?" or "how much has your watch ticked?"
prakash Reply
a load of 20N on a wire of cross sectional area 8×10^-7m produces an extension of 10.4m. calculate the young modules of the material of the wire is of length 5m
Ebenezer Reply
Young's modulus = stress/strain strain = extension/length (x/l) stress = force/area (F/A) stress/strain is F l/A x
so solve it
two bodies x and y start from rest and move with uniform acceleration of a and 4a respectively. if the bodies cover the same distance in terms of tx and ty what is the ratio of tx to ty
Oluwatola Reply
what is cesium atoms?
prakash Reply
The atoms which form the element Cesium are known as Cesium atoms.
A material that combines with and removes trace gases from vacuum tubes.
what is difference between entropy and heat capacity
Heat capacity can be defined as the amount of thermal energy required to warm the sample by 1°C. entropy is the disorder of the system. heat capacity is high when the disorder is high.
I want learn physics
Vinodhini Reply
sir how to understanding clearly
try to imagine everything you study in 3d
pls give me one title
displacement acceleration how understand
vernier caliper usage practically
karthik sir is there
what are the solution to all the exercise..?
What is realm
Vinodhini Reply
The quantum realm, also called the quantum scale, is a term of art inphysics referring to scales where quantum mechanical effects become important when studied as an isolated system. Typically, this means distances of 100 nanometers (10−9meters) or less or at very low temperature.
How to understand physics
Vinodhini Reply
i like physics very much
i want know physics practically where used in daily life
I want to teach physics very interesting to studentd
how can you build interest in physics
by reading it
understanding difficult
vinodhini mam, physics is used in our day to day life in all events..... everything happening around us can be explained in the base of physics..... saying simple stories happening in our daily life and relating it to physics and questioning students about how or why its happening like that can make
your class more interesting
anything send about physics daily life
How to understand easily
check out "LMES" youtube channel
even when you see this message in your phone...it works accord to a physics principle. you touch screen works based on physics, your internet works based on physics, etc....... check out google and search for it
what is mean by Newtonian principle of Relativity? definition and explanation with example
revolutionary Reply
what is art physics
Akinbulejo Reply
I've been trying to download a good and comprehensive textbook for physics, pls can somebody help me out?
try COLLEGE PHYSICS!! I think it will give you an edge.
c=1/c1+c2/1+c3 what is the answer
Akinbulejo Reply
got on answers bro
This may seem like a really stupid question, but is mechanical energy the same as potential energy? If not, what is the difference?
Nikki Reply
what is c=1\c1,c=2\c2,c=3\c3
mechanical energy is of two types 1: kinetic energy 2: potential energy,so, potential energy is actually the type of mechanical energy ,the mechanical due to position is designated as potential energy
Thank you!!!!!
Can someone possibly walk me through this problem? " A worker drives a 0.500 kg spike into a rail tie with a 2.50 kg sledgehammer. The hammer hits the spike with a speed of 65.0 m/s. If one-third Of the hammer's kinetic energy is converted to the internal energy of rhe hammer and spike.
how much does the total internal energy increase
you know the mass and the velocity of the hammer. therefore using the equation (mv^2)/2 you can find the kinetic energy. then take one third of this value and that will be your change in internal energy. here, the important thing is that spike is stationary so it does not contribute to initial Energ
Thabk you! :)
what is the formula for finding the to total capacitance in series arrangement
Austin Reply
Don't know
C = 1/C1+1/C2+1/C3

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?