<< Chapter < Page Chapter >> Page >

What else can we learn by examining the equation x = x 0 + v 0 t + 1 2 at 2 ? size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} We see that:

  • displacement depends on the square of the elapsed time when acceleration is not zero. In [link] , the dragster covers only one fourth of the total distance in the first half of the elapsed time
  • if acceleration is zero, then the initial velocity equals average velocity ( v 0 = v - size 12{v rSub { size 8{0} } = { bar {v}}} {} ) and x = x 0 + v 0 t + 1 2 at 2 size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} becomes x = x 0 + v 0 t size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t} {}

Solving for final velocity when velocity is not constant ( a 0 )

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {} for t size 12{t} {} , we get

t = v v 0 a . size 12{t= { {v - v rSub { size 8{0} } } over {a} } "." } {}

Substituting this and v - = v 0 + v 2 size 12{ { bar {v}}= { {v rSub { size 8{0} } +v} over {2} } } {} into x = x 0 + v - t size 12{x=x rSub { size 8{0} } + { bar {v}}t} {} , we get

v 2 = v 0 2 + 2 a x x 0 ( constant a ) . size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a left (x - x rSub { size 8{0} } right )" " \( "constant "a \) "." } {}

Calculating final velocity: dragsters

Calculate the final velocity of the dragster in [link] without using information about time.

Strategy

Draw a sketch.

Acceleration vector arrow pointing toward the right, labeled twenty-six point zero meters per second squared. Initial velocity equals 0. Final velocity equals question mark.

The equation v 2 = v 0 2 + 2 a ( x x 0 ) is ideally suited to this task because it relates velocities, acceleration, and displacement, and no time information is required.

Solution

1. Identify the known values. We know that v 0 = 0 size 12{v rSub { size 8{0} } =0} {} , since the dragster starts from rest. Then we note that x x 0 = 402 m size 12{x - x rSub { size 8{0} } ="402 m"} {} (this was the answer in [link] ). Finally, the average acceleration was given to be a = 26 . 0 m/s 2 size 12{a="26" "." "0 m/s" rSup { size 8{2} } } {} .

2. Plug the knowns into the equation v 2 = v 0 2 + 2 a ( x x 0 ) and solve for v .

v 2 = 0 + 2 26 . 0 m/s 2 402 m . size 12{v rSup { size 8{2} } =0+2 left ("26" "." "0 m/s" rSup { size 8{2} } right ) left ("402 m" right )} {}

Thus

v 2 = 2 . 09 × 10 4 m 2 /s 2 . size 12{v rSup { size 8{2} } =2 "." "09" times "10" rSup { size 8{4} } `m rSup { size 8{2} } "/s" rSup { size 8{2} } } {}

To get v size 12{v} {} , we take the square root:

v = 2 . 09 × 10 4 m 2 /s 2 = 145 m/s .

Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the acceleration.

Got questions? Get instant answers now!

An examination of the equation v 2 = v 0 2 + 2 a ( x x 0 ) size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a \( x - x rSub { size 8{0} } \) } {} can produce further insights into the general relationships among physical quantities:

  • The final velocity depends on how large the acceleration is and the distance over which it acts
  • For a fixed deceleration, a car that is going twice as fast doesn’t simply stop in twice the distance—it takes much further to stop. (This is why we have reduced speed zones near schools.)

Putting equations together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the equations needed.

Summary of kinematic equations (constant a size 12{a} {} )

x = x 0 + v - t size 12{x=`x rSub { size 8{0} } `+` { bar {v}}t} {}
v - = v 0 + v 2 size 12{ { bar {v}}=` { {v rSub { size 8{0} } +v} over {2} } } {}
v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {}
x = x 0 + v 0 t + 1 2 at 2 size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {}
v 2 = v 0 2 + 2 a x x 0 size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a left (x - x rSub { size 8{0} } right )} {}

Calculating displacement: how far does a car go when coming to a halt?

On dry concrete, a car can decelerate at a rate of 7 . 00 m/s 2 size 12{7 "." "00 m/s" rSup { size 8{2} } } {} , whereas on wet concrete it can decelerate at only 5 . 00 m/s 2 size 12{5 "." "00 m/s" rSup { size 8{2} } } {} . Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

Initial velocity equals thirty meters per second. Final velocity equals 0. Acceleration dry equals negative 7 point zero zero meters per second squared. Acceleration wet equals negative 5 point zero zero meters per second squared.

In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

Questions & Answers

how can we find absolute uncertainty
ayesha Reply
it what?
Luke
in physics
ayesha
the basic formula is uncertainty in momentum multiplied buy uncertainty In position is greater than or equal to 4×pi/2. same formula for energy and time
Luke
I have this one question can you please look it up it's 9702/22/O/N/17 Question 1 B 3
ayesha
how do I unlock the MCQ and the Essay?
Ojeh Reply
what is the dimension of strain
Joy Reply
Is there a formula for time of free fall given that the body has initial velocity? In other words, formula for time that takes a downward-shot projectile to hit the ground. Thanks!
Cyclone Reply
hi
Agboro
hiii
Chandan
Hi
Sahim
hi
Jeff
hey
Priscilla
sup guys
Bile
Hy
Kulsum
What is unit of watt?
Kulsum
watt is the unit of power
Rahul
p=f.v
Rahul
watt can also be expressed as Nm/s
Rahul
what s i unit of mass
Maxamed
SI unit of mass is Kg(kilogram).
Robel
what is formula of distance
Maxamed
Formula for for the falling body with initial velocity is:v^2=v(initial)^2+2*g*h
Mateo
i can't understand
Maxamed
we can't do this calculation without knowing the height of the initial position of the particle
Chathu
sorry but no more in science
Imoreh
2 forces whose resultant is 100N, are at right angle to each other .if one of them makes an angle of 30 degree with the resultant determine it's magnitude
Victor Reply
50 N... (50 *1.732)N
Sahim
Plz cheak the ans and give reply..
Sahim
Is earth is an inertial frame?
Sahim Reply
The abacus (plural abaci or abacuses), also called a counting frame, is a calculating tool that was in use in Europe, China and Russia, centuries before the adoption of the written Hindu–Arabic numeral system
Sahim
thanks
Irungu
Most welcome
Sahim
Hey.. I've a question.
Sahim Reply
Is earth inertia frame?
Sahim
only the center
Shii
What is an abucus?
Irungu
what would be the correct interrogation "what is time?" or "how much has your watch ticked?"
prakash Reply
someone please give answer to this.
prakash
a load of 20N on a wire of cross sectional area 8×10^-7m produces an extension of 10.4m. calculate the young modules of the material of the wire is of length 5m
Ebenezer Reply
Young's modulus = stress/strain strain = extension/length (x/l) stress = force/area (F/A) stress/strain is F l/A x
El
so solve it
Ebenezer
please
Ebenezer
two bodies x and y start from rest and move with uniform acceleration of a and 4a respectively. if the bodies cover the same distance in terms of tx and ty what is the ratio of tx to ty
Oluwatola Reply
what is cesium atoms?
prakash Reply
The atoms which form the element Cesium are known as Cesium atoms.
Naman
A material that combines with and removes trace gases from vacuum tubes.
Shankar
what is difference between entropy and heat capacity
Varun
Heat capacity can be defined as the amount of thermal energy required to warm the sample by 1°C. entropy is the disorder of the system. heat capacity is high when the disorder is high.
Chathu
I want learn physics
Vinodhini Reply
sir how to understanding clearly
Vinodhini
try to imagine everything you study in 3d
revolutionary
pls give me one title
Vinodhini
displacement acceleration how understand
Vinodhini
vernier caliper usage practically
Vinodhini
karthik sir is there
Vinodhini
what are the solution to all the exercise..?
What is realm
Vinodhini Reply
The quantum realm, also called the quantum scale, is a term of art inphysics referring to scales where quantum mechanical effects become important when studied as an isolated system. Typically, this means distances of 100 nanometers (10−9meters) or less or at very low temperature.
revolutionary
How to understand physics
Vinodhini Reply
i like physics very much
Vinodhini
i want know physics practically where used in daily life
Vinodhini
I want to teach physics very interesting to studentd
Vinodhini
how can you build interest in physics
Prince
by reading it
Austin
understanding difficult
Vinodhini
vinodhini mam, physics is used in our day to day life in all events..... everything happening around us can be explained in the base of physics..... saying simple stories happening in our daily life and relating it to physics and questioning students about how or why its happening like that can make
revolutionary
your class more interesting
revolutionary
anything send about physics daily life
Vinodhini
How to understand easily
Vinodhini
check out "LMES" youtube channel
revolutionary
even when you see this message in your phone...it works accord to a physics principle. you touch screen works based on physics, your internet works based on physics, etc....... check out google and search for it
revolutionary
what is mean by Newtonian principle of Relativity? definition and explanation with example
revolutionary Reply

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask