<< Chapter < Page Chapter >> Page >
  • Derive expressions for total capacitance in series and in parallel.
  • Identify series and parallel parts in the combination of connection of capacitors.
  • Calculate the effective capacitance in series and parallel given individual capacitances.

Several capacitors may be connected together in a variety of applications. Multiple connections of capacitors act like a single equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how they are connected. There are two simple and common types of connections, called series and parallel , for which we can easily calculate the total capacitance. Certain more complicated connections can also be related to combinations of series and parallel.

Capacitance in series

[link] (a) shows a series connection of three capacitors with a voltage applied. As for any capacitor, the capacitance of the combination is related to charge and voltage by C = Q V size 12{C= { {Q} over {V} } } {} .

Note in [link] that opposite charges of magnitude Q size 12{Q} {} flow to either side of the originally uncharged combination of capacitors when the voltage V size 12{V} {} is applied. Conservation of charge requires that equal-magnitude charges be created on the plates of the individual capacitors, since charge is only being separated in these originally neutral devices. The end result is that the combination resembles a single capacitor with an effective plate separation greater than that of the individual capacitors alone. (See [link] (b).) Larger plate separation means smaller capacitance. It is a general feature of series connections of capacitors that the total capacitance is less than any of the individual capacitances.

When capacitors are connected in series, an equivalent capacitor would have a plate separation that is greater than that of any individual capacitor. Hence the series connections produce a resultant capacitance less than that of the individual capacitors.
(a) Capacitors connected in series. The magnitude of the charge on each plate is Q . (b) An equivalent capacitor has a larger plate separation d size 12{d} {} . Series connections produce a total capacitance that is less than that of any of the individual capacitors.

We can find an expression for the total capacitance by considering the voltage across the individual capacitors shown in [link] . Solving C = Q V size 12{C= { {Q} over {V} } } {} for V size 12{V} {} gives V = Q C size 12{V= { {Q} over {C} } } {} . The voltages across the individual capacitors are thus V 1 = Q C 1 size 12{ {V} rSub { size 8{1} } = { {Q} over { {C} rSub { size 8{1} } } } } {} , V 2 = Q C 2 size 12{ {V} rSub { size 8{2} } = { {Q} over { {C} rSub { size 8{2} } } } } {} , and V 3 = Q C 3 size 12{ {V} rSub { size 8{3} } = { {Q} over { {C} rSub { size 8{3} } } } } {} . The total voltage is the sum of the individual voltages:

V = V 1 + V 2 + V 3 . size 12{V= {V} rSub { size 8{1} } + {V} rSub { size 8{2} } + {V} rSub { size 8{3} } } {}

Now, calling the total capacitance C S size 12{C rSub { size 8{S} } } {} for series capacitance, consider that

V = Q C S = V 1 + V 2 + V 3 . size 12{V= { {Q} over { {C} rSub { size 8{S} } } } = {V} rSub { size 8{1} } + {V} rSub { size 8{2} } + {V} rSub { size 8{3} } } {}

Entering the expressions for V 1 size 12{V rSub { size 8{1} } } {} , V 2 size 12{V rSub { size 8{2} } } {} , and V 3 size 12{V rSub { size 8{3} } } {} , we get

Q C S = Q C 1 + Q C 2 + Q C 3 . size 12{ { {Q} over { {C} rSub { size 8{S} } } } = { {Q} over { {C} rSub { size 8{1} } } } + { {Q} over { {C} rSub { size 8{2} } } } + { {Q} over { {C} rSub { size 8{3} } } } } {}

Canceling the Q size 12{Q} {} s, we obtain the equation for the total capacitance in series C S size 12{ {C} rSub { size 8{S} } } {} to be

1 C S = 1 C 1 + 1 C 2 + 1 C 3 + . . . , size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}

where “...” indicates that the expression is valid for any number of capacitors connected in series. An expression of this form always results in a total capacitance C S size 12{ {C} rSub { size 8{S} } } {} that is less than any of the individual capacitances C 1 size 12{ {C} rSub { size 8{1} } } {} , C 2 size 12{ {C} rSub { size 8{2} } } {} , ..., as the next example illustrates.

Total capacitance in series, C s size 12{ {C} rSub { size 8{S} } } {}

Total capacitance in series: 1 C S = 1 C 1 + 1 C 2 + 1 C 3 + . . . size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}

What is the series capacitance?

Find the total capacitance for three capacitors connected in series, given their individual capacitances are 1.000, 5.000, and 8.000 µF size 12{mF} {} .

Strategy

With the given information, the total capacitance can be found using the equation for capacitance in series.

Solution

Entering the given capacitances into the expression for 1 C S size 12{ { {1} over { {C} rSub { size 8{S} } } } } {} gives 1 C S = 1 C 1 + 1 C 2 + 1 C 3 size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } } {} .

1 C S = 1 1 . 000 µF + 1 5 . 000 µF + 1 8 . 000 µF = 1 . 325 µF size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over {1 "." "00" mF} } + { {1} over {5 "." "00" mF} } + { {1} over {8 "." "00" mF} } = { {1 "." "325"} over {mF} } } {}

Inverting to find C S size 12{C rSub { size 8{S} } } {} yields {} C S = µF 1 . 325 = 0 . 755 µF size 12{ {C} rSub { size 8{S} } = { {mF} over {1 "." "325"} } =0 "." "755" mF} {} .

Discussion

The total series capacitance C s size 12{ {C} rSub { size 8{S} } } {} is less than the smallest individual capacitance, as promised. In series connections of capacitors, the sum is less than the parts. In fact, it is less than any individual. Note that it is sometimes possible, and more convenient, to solve an equation like the above by finding the least common denominator, which in this case (showing only whole-number calculations) is 40. Thus,

1 C S = 40 40 µF + 8 40 µF + 5 40 µF = 53 40 µF , size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {"40"} over {"40" mF} } + { {8} over {"40" mF} } + { {5} over {"40" mF} } = { {"53"} over {"40" mF} } } {}

so that

C S = 40 µF 53 = 0 . 755 µF . size 12{ {C} rSub { size 8{S} } = { {"40" µF} over {"53"} } =0 "." "755" µF} {}
Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask