<< Chapter < Page Chapter >> Page >
  • Derive expressions for total capacitance in series and in parallel.
  • Identify series and parallel parts in the combination of connection of capacitors.
  • Calculate the effective capacitance in series and parallel given individual capacitances.

Several capacitors may be connected together in a variety of applications. Multiple connections of capacitors act like a single equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how they are connected. There are two simple and common types of connections, called series and parallel , for which we can easily calculate the total capacitance. Certain more complicated connections can also be related to combinations of series and parallel.

Capacitance in series

[link] (a) shows a series connection of three capacitors with a voltage applied. As for any capacitor, the capacitance of the combination is related to charge and voltage by C = Q V size 12{C= { {Q} over {V} } } {} .

Note in [link] that opposite charges of magnitude Q size 12{Q} {} flow to either side of the originally uncharged combination of capacitors when the voltage V size 12{V} {} is applied. Conservation of charge requires that equal-magnitude charges be created on the plates of the individual capacitors, since charge is only being separated in these originally neutral devices. The end result is that the combination resembles a single capacitor with an effective plate separation greater than that of the individual capacitors alone. (See [link] (b).) Larger plate separation means smaller capacitance. It is a general feature of series connections of capacitors that the total capacitance is less than any of the individual capacitances.

When capacitors are connected in series, an equivalent capacitor would have a plate separation that is greater than that of any individual capacitor. Hence the series connections produce a resultant capacitance less than that of the individual capacitors.
(a) Capacitors connected in series. The magnitude of the charge on each plate is Q . (b) An equivalent capacitor has a larger plate separation d size 12{d} {} . Series connections produce a total capacitance that is less than that of any of the individual capacitors.

We can find an expression for the total capacitance by considering the voltage across the individual capacitors shown in [link] . Solving C = Q V size 12{C= { {Q} over {V} } } {} for V size 12{V} {} gives V = Q C size 12{V= { {Q} over {C} } } {} . The voltages across the individual capacitors are thus V 1 = Q C 1 size 12{ {V} rSub { size 8{1} } = { {Q} over { {C} rSub { size 8{1} } } } } {} , V 2 = Q C 2 size 12{ {V} rSub { size 8{2} } = { {Q} over { {C} rSub { size 8{2} } } } } {} , and V 3 = Q C 3 size 12{ {V} rSub { size 8{3} } = { {Q} over { {C} rSub { size 8{3} } } } } {} . The total voltage is the sum of the individual voltages:

V = V 1 + V 2 + V 3 . size 12{V= {V} rSub { size 8{1} } + {V} rSub { size 8{2} } + {V} rSub { size 8{3} } } {}

Now, calling the total capacitance C S size 12{C rSub { size 8{S} } } {} for series capacitance, consider that

V = Q C S = V 1 + V 2 + V 3 . size 12{V= { {Q} over { {C} rSub { size 8{S} } } } = {V} rSub { size 8{1} } + {V} rSub { size 8{2} } + {V} rSub { size 8{3} } } {}

Entering the expressions for V 1 size 12{V rSub { size 8{1} } } {} , V 2 size 12{V rSub { size 8{2} } } {} , and V 3 size 12{V rSub { size 8{3} } } {} , we get

Q C S = Q C 1 + Q C 2 + Q C 3 . size 12{ { {Q} over { {C} rSub { size 8{S} } } } = { {Q} over { {C} rSub { size 8{1} } } } + { {Q} over { {C} rSub { size 8{2} } } } + { {Q} over { {C} rSub { size 8{3} } } } } {}

Canceling the Q size 12{Q} {} s, we obtain the equation for the total capacitance in series C S size 12{ {C} rSub { size 8{S} } } {} to be

1 C S = 1 C 1 + 1 C 2 + 1 C 3 + . . . , size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}

where “...” indicates that the expression is valid for any number of capacitors connected in series. An expression of this form always results in a total capacitance C S size 12{ {C} rSub { size 8{S} } } {} that is less than any of the individual capacitances C 1 size 12{ {C} rSub { size 8{1} } } {} , C 2 size 12{ {C} rSub { size 8{2} } } {} , ..., as the next example illustrates.

Total capacitance in series, C s size 12{ {C} rSub { size 8{S} } } {}

Total capacitance in series: 1 C S = 1 C 1 + 1 C 2 + 1 C 3 + . . . size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}

What is the series capacitance?

Find the total capacitance for three capacitors connected in series, given their individual capacitances are 1.000, 5.000, and 8.000 µF size 12{mF} {} .

Strategy

With the given information, the total capacitance can be found using the equation for capacitance in series.

Solution

Entering the given capacitances into the expression for 1 C S size 12{ { {1} over { {C} rSub { size 8{S} } } } } {} gives 1 C S = 1 C 1 + 1 C 2 + 1 C 3 size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } } {} .

1 C S = 1 1 . 000 µF + 1 5 . 000 µF + 1 8 . 000 µF = 1 . 325 µF size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over {1 "." "00" mF} } + { {1} over {5 "." "00" mF} } + { {1} over {8 "." "00" mF} } = { {1 "." "325"} over {mF} } } {}

Inverting to find C S size 12{C rSub { size 8{S} } } {} yields {} C S = µF 1 . 325 = 0 . 755 µF size 12{ {C} rSub { size 8{S} } = { {mF} over {1 "." "325"} } =0 "." "755" mF} {} .

Discussion

The total series capacitance C s size 12{ {C} rSub { size 8{S} } } {} is less than the smallest individual capacitance, as promised. In series connections of capacitors, the sum is less than the parts. In fact, it is less than any individual. Note that it is sometimes possible, and more convenient, to solve an equation like the above by finding the least common denominator, which in this case (showing only whole-number calculations) is 40. Thus,

1 C S = 40 40 µF + 8 40 µF + 5 40 µF = 53 40 µF , size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {"40"} over {"40" mF} } + { {8} over {"40" mF} } + { {5} over {"40" mF} } = { {"53"} over {"40" mF} } } {}

so that

C S = 40 µF 53 = 0 . 755 µF . size 12{ {C} rSub { size 8{S} } = { {"40" µF} over {"53"} } =0 "." "755" µF} {}
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask