<< Chapter < Page
  College physics   Page 1 / 1
Chapter >> Page >
  • Compare simple harmonic motion with uniform circular motion.

The figure shows a clock-wise rotating empty merry go round with iron bars holding the decorated wooden horse statues, four in each column.
The horses on this merry-go-round exhibit uniform circular motion. (credit: Wonderlane, Flickr)

There is an easy way to produce simple harmonic motion by using uniform circular motion. [link] shows one way of using this method. A ball is attached to a uniformly rotating vertical turntable, and its shadow is projected on the floor as shown. The shadow undergoes simple harmonic motion. Hooke’s law usually describes uniform circular motions ( ω size 12{ω} {} constant) rather than systems that have large visible displacements. So observing the projection of uniform circular motion, as in [link] , is often easier than observing a precise large-scale simple harmonic oscillator. If studied in sufficient depth, simple harmonic motion produced in this manner can give considerable insight into many aspects of oscillations and waves and is very useful mathematically. In our brief treatment, we shall indicate some of the major features of this relationship and how they might be useful.

The given figure shows a vertical turntable with four floor projecting light bulbs at the top. A smaller sized rectangular bar is attached to this turntable at the bottom half, with a circular knob attached to it. A red colored small ball is rolling along the boundary of this knob in angular direction, and the lights falling through this ball are ball making shadows just under the knob on the floor. The middle shadow is the brightest and starts fading as we look through to the cornered shadow.
The shadow of a ball rotating at constant angular velocity ω size 12{ω} {} on a turntable goes back and forth in precise simple harmonic motion.

[link] shows the basic relationship between uniform circular motion and simple harmonic motion. The point P travels around the circle at constant angular velocity ω size 12{ω} {} . The point P is analogous to an object on the merry-go-round. The projection of the position of P onto a fixed axis undergoes simple harmonic motion and is analogous to the shadow of the object. At the time shown in the figure, the projection has position x size 12{x} {} and moves to the left with velocity v size 12{v} {} . The velocity of the point P around the circle equals v ¯ max size 12{ {overline {v}} rSub { size 8{"max"} } } {} .The projection of v ¯ max size 12{ {overline {v}} rSub { size 8{"max"} } } {} on the x size 12{x} {} -axis is the velocity v size 12{v} {} of the simple harmonic motion along the x size 12{x} {} -axis.

The figure shows a point P moving through the circumference of a circle in an angular way with angular velocity omega. The diameter is projected along the x axis, with point P making an angle theta at the centre of the circle. A point along the diameter shows the projection of the point P with a dotted perpendicular line from P to this point, the projection of the point is given as v along the circle and its velocity v subscript max, over the top of the projection arrow in an upward left direction.
A point P moving on a circular path with a constant angular velocity ω size 12{ω} {} is undergoing uniform circular motion. Its projection on the x-axis undergoes simple harmonic motion. Also shown is the velocity of this point around the circle, v ¯ max size 12{ {overline {v}} rSub { size 8{"max"} } } {} , and its projection, which is v size 12{v} {} . Note that these velocities form a similar triangle to the displacement triangle.

To see that the projection undergoes simple harmonic motion, note that its position x size 12{x} {} is given by

x = X cos θ , size 12{x=X"cos"θ","} {}

where θ = ω t size 12{θ=ω`t} {} , ω size 12{ω} {} is the constant angular velocity, and X size 12{X} {} is the radius of the circular path. Thus,

x = X cos ω t . size 12{x=X"cos"ω`t} {}

The angular velocity ω size 12{ω} {} is in radians per unit time; in this case size 12{2π} {} radians is the time for one revolution T size 12{T} {} . That is, ω = / T size 12{ω=2π/T} {} . Substituting this expression for ω size 12{ω} {} , we see that the position x size 12{x} {} is given by:

x ( t ) = cos t T . size 12{x \( t \) ="cos" left ( { {2π`t} over {T} } right )} {}

This expression is the same one we had for the position of a simple harmonic oscillator in Simple Harmonic Motion: A Special Periodic Motion . If we make a graph of position versus time as in [link] , we see again the wavelike character (typical of simple harmonic motion) of the projection of uniform circular motion onto the x size 12{x} {} -axis.

The given figure shows a vertical turntable with four floor projecting light bulbs at the top. A smaller sized rectangular bar is attached to this turntable at the bottom half, with a circular knob attached to it. A red colored small ball is rolling along the boundary of this knob in angular direction. The turnaround table is put upon a roller paper sheet, on which the simple harmonic motion is measured, which is shown here in oscillating waves on the paper sheet in front of the table. A graph of amplitude versus time is also given alongside the figure.
The position of the projection of uniform circular motion performs simple harmonic motion, as this wavelike graph of x size 12{x} {} versus t size 12{x} {} indicates.

Now let us use [link] to do some further analysis of uniform circular motion as it relates to simple harmonic motion. The triangle formed by the velocities in the figure and the triangle formed by the displacements ( X , x , size 12{X,x,} {} and X 2 x 2 size 12{ sqrt {X rSup { size 8{2} } - x rSup { size 8{2} } } } {} ) are similar right triangles. Taking ratios of similar sides, we see that

v v max = X 2 x 2 X = 1 x 2 X 2 . size 12{ { {v} over {v rSub { size 8{"max"} } } } = { { sqrt {X rSup { size 8{2} } - x rSup { size 8{2} } } } over {X} } = sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } } {}

We can solve this equation for the speed v size 12{v} {} or

v = v max 1 x 2 X 2 . size 12{v=v rSub { size 8{"max"} } sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } } {}

This expression for the speed of a simple harmonic oscillator is exactly the same as the equation obtained from conservation of energy considerations in Energy and the Simple Harmonic Oscillator .You can begin to see that it is possible to get all of the characteristics of simple harmonic motion from an analysis of the projection of uniform circular motion.

Finally, let us consider the period T size 12{T} {} of the motion of the projection. This period is the time it takes the point P to complete one revolution. That time is the circumference of the circle X size 12{2πX} {} divided by the velocity around the circle, v max size 12{v rSub { size 8{"max"} } } {} . Thus, the period T size 12{T} {} is

T = 2πX v max . size 12{T= { {2πX} over {v rSub { size 8{"max"} } } } } {}

We know from conservation of energy considerations that

v max = k m X . size 12{v rSub { size 8{"max"} } = sqrt { { {k} over {m} } } X} {}

Solving this equation for X / v max size 12{X/v rSub { size 8{"max"} } } {} gives

X v max = m k . size 12{ { {X} over {v rSub { size 8{"max"} } } } = sqrt { { {m} over {k} } } } {}

Substituting this expression into the equation for T size 12{T} {} yields

T = m k . size 12{T=2π sqrt { { {m} over {k} } } "."} {}

Thus, the period of the motion is the same as for a simple harmonic oscillator. We have determined the period for any simple harmonic oscillator using the relationship between uniform circular motion and simple harmonic motion.

Some modules occasionally refer to the connection between uniform circular motion and simple harmonic motion. Moreover, if you carry your study of physics and its applications to greater depths, you will find this relationship useful. It can, for example, help to analyze how waves add when they are superimposed.

Identify an object that undergoes uniform circular motion. Describe how you could trace the simple harmonic motion of this object as a wave.

A record player undergoes uniform circular motion. You could attach dowel rod to one point on the outside edge of the turntable and attach a pen to the other end of the dowel. As the record player turns, the pen will move. You can drag a long piece of paper under the pen, capturing its motion as a wave.

Got questions? Get instant answers now!

Section summary

A projection of uniform circular motion undergoes simple harmonic oscillation.

Problems&Exercises

(a)What is the maximum velocity of an 85.0-kg person bouncing on a bathroom scale having a force constant of 1 . 50 × 10 6 N/m size 12{1 "." "50" times "10" rSup { size 8{5} } "N/m"} {} , if the amplitude of the bounce is 0.200 cm? (b)What is the maximum energy stored in the spring?

a). 0.266 m/s

b). 3.00 J

Got questions? Get instant answers now!

A novelty clock has a 0.0100-kg mass object bouncing on a spring that has a force constant of 1.25 N/m. What is the maximum velocity of the object if the object bounces 3.00 cm above and below its equilibrium position? (b) How many joules of kinetic energy does the object have at its maximum velocity?

Got questions? Get instant answers now!

At what positions is the speed of a simple harmonic oscillator half its maximum? That is, what values of x / X size 12{x/X} {} give v = ± v max / 2 size 12{v= +- v rSub { size 8{"max"} } /2} {} , where X size 12{X} {} is the amplitude of the motion?

± 3 2 size 12{ +- { { sqrt {3} } over {2} } } {}

Got questions? Get instant answers now!

A ladybug sits 12.0 cm from the center of a Beatles music album spinning at 33.33 rpm. What is the maximum velocity of its shadow on the wall behind the turntable, if illuminated parallel to the record by the parallel rays of the setting Sun?

Got questions? Get instant answers now!

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask