<< Chapter < Page Chapter >> Page >
  • Calculate the Reynolds number for an object moving through a fluid.
  • Explain whether the Reynolds number indicates laminar or turbulent flow.
  • Describe the conditions under which an object has a terminal speed.

A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s wind.) Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two. Just as with flow in tubes, it is possible to predict when a moving object creates turbulence. We use another form of the Reynolds number N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} , defined for an object moving in a fluid to be

N R = ρ vL η (object in fluid), size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {}

where L size 12{L} {} is a characteristic length of the object (a sphere’s diameter, for example), ρ size 12{ρ} {} the fluid density, η size 12{η} {} its viscosity, and v size 12{v} {} the object’s speed in the fluid. If N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} is less than about 1, flow around the object can be laminar, particularly if the object has a smooth shape. The transition to turbulent flow occurs for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between 1 and about 10, depending on surface roughness and so on. Depending on the surface, there can be a turbulent wake behind the object with some laminar flow over its surface. For an N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between 10 and 10 6 size 12{"10" rSup { size 8{6} } } {} , the flow may be either laminar or turbulent and may oscillate between the two. For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than about 10 6 size 12{"10" rSup { size 8{6} } } {} , the flow is entirely turbulent, even at the surface of the object. (See [link] .) Laminar flow occurs mostly when the objects in the fluid are small, such as raindrops, pollen, and blood cells in plasma.

Does a ball have a turbulent wake?

Calculate the Reynolds number N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use N R = ρ vL η size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {} to calculate N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} , since all values in it are either given or can be found in tables of density and viscosity.

Solution

Substituting values into the equation for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} yields

N R = ρ vL η = ( 1 . 29 kg/m 3 ) ( 40.0 m/s ) ( 0.0740 m ) 1.81 × 10 5 1.00 Pa s = 2.11 × 10 5 .

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

Got questions? Get instant answers now!

One of the consequences of viscosity is a resistance force called viscous drag     F V size 12{F rSub { size 8{V} } } {} that is exerted on a moving object. This force typically depends on the object’s speed (in contrast with simple friction). Experiments have shown that for laminar flow ( N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} less than about one) viscous drag is proportional to speed, whereas for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between about 10 and 10 6 size 12{"10" rSup { size 8{6} } } {} , viscous drag is proportional to speed squared. (This relationship is a strong dependence and is pertinent to bicycle racing, where even a small headwind causes significantly increased drag on the racer. Cyclists take turns being the leader in the pack for this reason.) For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than 10 6 size 12{"10" rSup { size 8{6} } } {} , drag increases dramatically and behaves with greater complexity. For laminar flow around a sphere, F V size 12{F rSub { size 8{V} } } {} is proportional to fluid viscosity η size 12{η} {} , the object’s characteristic size L size 12{L} {} , and its speed v size 12{v} {} . All of which makes sense—the more viscous the fluid and the larger the object, the more drag we expect. Recall Stoke’s law F S = 6 πrηv size 12{F rSub { size 8{S} } =6πrηv} {} . For the special case of a small sphere of radius R size 12{R} {} moving slowly in a fluid of viscosity η size 12{η} {} , the drag force F S size 12{F rSub { size 8{S} } } {} is given by

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask