<< Chapter < Page Chapter >> Page >

This appendix is broken into several tables.

  • [link] , Important Constants
  • [link] , Submicroscopic Masses
  • [link] , Solar System Data
  • [link] , Metric Prefixes for Powers of Ten and Their Symbols
  • [link] , The Greek Alphabet
  • [link] , SI units
  • [link] , Selected British Units
  • [link] , Other Units
  • [link] , Useful Formulae
Important constants Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty, www.physics.nist.gov/cuu (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits. Numbers without uncertainties are exact as defined.
Symbol Meaning Best Value Approximate Value
c size 12{c} {} Speed of light in vacuum 2 . 99792458 × 10 8 m / s size 12{2 "." "99792458" times "10" rSup { size 8{8} } ` {m} slash {s} } {} 3 . 00 × 10 8 m / s size 12{3 "." "00" times "10" rSup { size 8{8} } ` {m} slash {s} } {}
G size 12{G} {} Gravitational constant 6 . 67408 ( 31 ) × 10 11 N m 2 / kg 2 size 12{6 "." "67384" \( "80" \) times "10" rSup { size 8{ - "11"} } ` {N cdot m rSup { size 8{2} } } slash {"kg" rSup { size 8{2} } } } {} 6 . 67 × 10 11 N m 2 / kg 2 size 12{6 "." "67" times "10" rSup { size 8{ - "11"} } ` {N cdot m rSup { size 8{2} } } slash {"kg" rSup { size 8{2} } } } {}
N A size 12{N rSub { size 8{A} } } {} Avogadro’s number 6 . 02214129 ( 27 ) × 10 23 size 12{6 "." "02214129" \( "27" \) times "10" rSup { size 8{"23"} } } {} 6 . 02 × 10 23 size 12{6 "." "02" times "10" rSup { size 8{"23"} } } {}
k size 12{k} {} Boltzmann’s constant 1 . 3806488 ( 13 ) × 10 23 J / K size 12{1 "." "3806488" \( "13" \) times "10" rSup { size 8{ - "23"} } ` {J} slash {K} } {} 1 . 38 × 10 23 J / K size 12{1 "." "38" times "10" rSup { size 8{ - "23"} } ` {J} slash {K} } {}
R size 12{R} {} Gas constant 8 . 3144621 ( 75 ) J / mol K size 12{8 "." "3144621" \( "75" \) ` {J} slash {"mol" cdot K} } {} 8 . 31 J / mol K = 1 . 99 cal / mol K = 0 . 0821 atm L / mol K size 12{8 "." "31"` {J} slash {"mol" cdot K=1 "." "99"` {"cal"} slash {"mol" cdot K=0 "." "0821"` {"atm" cdot L} slash {"mol" cdot K} } } } {}
σ size 12{σ} {} Stefan-Boltzmann constant 5 . 670373 ( 21 ) × 10 8 W / m 2 K size 12{5 "." "670373" \( "21" \) times "10" rSup { size 8{ - 8} } ` {W} slash {m rSup { size 8{2} } cdot K} } {} 5 . 67 × 10 8 W / m 2 K size 12{5 "." "67" times "10" rSup { size 8{ - 8} } ` {W} slash {m rSup { size 8{2} } cdot K} } {}
k size 12{k} {} Coulomb force constant 8 . 987551788 . . . × 10 9 N m 2 / C 2 size 12{8 "." "987551788" "." "." "." `` times "10" rSup { size 8{9} } ` {N cdot m rSup { size 8{2} } } slash {C rSup { size 8{2} } } } {} 8.99 × 10 9 N m 2 / C 2 size 12{9 times "10" rSup { size 8{9} } ` {N cdot m rSup { size 8{2} } } slash {C rSup { size 8{2} } } } {}
q e size 12{q rSub { size 8{e} } } {} Charge on electron 1 . 602176565 ( 35 ) × 10 19 C size 12{ - 1 "." "602176565" \( "35" \) times "10" rSup { size 8{ - "19"} } `C} {} 1 . 60 × 10 19 C size 12{ - 1 "." "60" times "10" rSup { size 8{ - "19"} } `C} {}
ε 0 size 12{ε rSub { size 8{0} } } {} Permittivity of free space 8 . 854187817 . . . × 10 12 C 2 / N m 2 size 12{8 "." "854187817" "." "." "." `` times "10" rSup { size 8{ - "12"} } ` {C rSup { size 8{2} } } slash {N cdot m rSup { size 8{2} } } } {} 8 . 85 × 10 12 C 2 / N m 2 size 12{8 "." "85" times "10" rSup { size 8{ - "12"} } ` {C rSup { size 8{2} } } slash {N cdot m rSup { size 8{2} } } } {}
μ 0 size 12{μ rSub { size 8{0} } } {} Permeability of free space × 10 7 T m / A size 12{4π times "10" rSup { size 8{ - 7} } ` {T cdot m} slash {A} } {} 1 . 26 × 10 6 T m / A size 12{1 "." "26" times "10" rSup { size 8{ - 6} } ` {T cdot m} slash {A} } {}
h size 12{h} {} Planck’s constant 6 . 62606957 ( 29 ) × 10 34 J s size 12{6 "." "62606957" \( "29" \) times "10" rSup { size 8{ - "34"} } `J cdot s} {} 6 . 63 × 10 34 J s size 12{6 "." "63" times "10" rSup { size 8{ - "34"} } `J cdot s} {}
Submicroscopic masses Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty, www.physics.nist.gov/cuu (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits. Numbers without uncertainties are exact as defined.
Symbol Meaning Best Value Approximate Value
m e size 12{m rSub { size 8{e} } } {} Electron mass 9 . 10938291 ( 40 ) × 10 31 kg size 12{9 "." "10938291" \( "40" \) times "10" rSup { size 8{ - "31"} } `"kg"} {} 9 . 11 × 10 31 kg size 12{9 "." "11" times "10" rSup { size 8{ - "31"} } `"kg"} {}
m p size 12{m rSub { size 8{p} } } {} Proton mass 1 . 672621777 ( 74 ) × 10 27 kg size 12{1 "." "672621777" \( "74" \) times "10" rSup { size 8{ - "27"} } `"kg"} {} 1 . 6726 × 10 27 kg size 12{1 "." "6726" times "10" rSup { size 8{ - "27"} } `"kg"} {}
m n size 12{m rSub { size 8{n} } } {} Neutron mass 1 . 674927351 ( 74 ) × 10 27 kg size 12{1 "." "674927351" \( "74" \) times "10" rSup { size 8{ - "27"} } `"kg"} {} 1 . 6749 × 10 27 kg size 12{1 "." "6749" times "10" rSup { size 8{ - "27"} } `"kg"} {}
u size 12{u} {} Atomic mass unit 1 . 660538921 ( 73 ) × 10 27 kg size 12{1 "." "660538921" \( "73" \) times "10" rSup { size 8{ - "27"} } `"kg"} {} 1 . 6605 × 10 27 kg size 12{1 "." "6605" times "10" rSup { size 8{ - "27"} } `"kg"} {}
Solar system data
Sun mass 1 . 99 × 10 30 kg size 12{1 "." "99" times "10" rSup { size 8{"30"} } `"kg"} {}
average radius 6 . 96 × 10 8 m size 12{6 "." "96" times "10" rSup { size 8{8} } `m} {}
Earth-sun distance (average) 1 . 496 × 10 11 m size 12{1 "." "496" times "10" rSup { size 8{"11"} } " m"} {}
Earth mass 5 . 9736 × 10 24 kg size 12{5 "." "9736" times "10" rSup { size 8{"24"} } `"kg"} {}
average radius 6 . 376 × 10 6 m size 12{6 "." "376" times "10" rSup { size 8{6} } `m} {} {}
orbital period 3 . 16 × 10 7 s size 12{3 "." "16" times "10" rSup { size 8{7} } " s "} {}
Moon mass 7 . 35 × 10 22 kg size 12{7 "." "35" times "10" rSup { size 8{"22"} } `"kg"} {}
average radius 1 . 74 × 10 6 m size 12{1 "." "74" times "10" rSup { size 8{6} } `m} {}
orbital period (average) 2 . 36 × 10 6 s size 12{2 "." "36" times "10" rSup { size 8{6} } " s"} {}
Earth-moon distance (average) 3 . 84 × 10 8 m size 12{3 "." "84" times "10" rSup { size 8{8} } " m"} {}
Metric prefixes for powers of ten and their symbols
Prefix Symbol Value Prefix Symbol Value
tera T 10 12 size 12{"10" rSup { size 8{"12"} } } {} deci d 10 1 size 12{"10" rSup { size 8{ - 1} } } {}
giga G 10 9 size 12{"10" rSup { size 8{9} } } {} centi c 10 2 size 12{"10" rSup { size 8{ - 2} } } {}
mega M 10 6 size 12{"10" rSup { size 8{6} } } {} milli m 10 3 size 12{"10" rSup { size 8{ - 3} } } {}
kilo k 10 3 size 12{"10" rSup { size 8{3} } } {} micro μ size 12{μ} {} 10 6 size 12{"10" rSup { size 8{ - 6} } } {}
hecto h 10 2 size 12{"10" rSup { size 8{2} } } {} nano n 10 9 size 12{"10" rSup { size 8{ - 9} } } {}
deka da 10 1 size 12{"10" rSup { size 8{1} } } {} pico p 10 12 size 12{"10" rSup { size 8{ - "12"} } } {}
10 0 ( = 1 ) size 12{"10" rSup { size 8{0} } \( `=1` \) } {} femto f 10 15 size 12{"10" rSup { size 8{ - "15"} } } {}
The greek alphabet
Alpha Α size 12{Α} {} α size 12{α} {} Eta Η size 12{Η} {} η size 12{η} {} Nu Ν size 12{Ν} {} ν size 12{ν} {} Tau Τ size 12{Τ} {} τ size 12{τ} {}
Beta Β size 12{Β} {} β size 12{β} {} Theta Θ size 12{Θ} {} θ size 12{θ} {} Xi Ξ size 12{Ξ} {} ξ size 12{ξ} {} Upsilon Υ size 12{Υ} {} υ size 12{υ} {}
Gamma Γ size 12{Γ} {} γ size 12{γ} {} Iota Ι size 12{Ι} {} ι size 12{ι} {} Omicron Ο size 12{Ο} {} ο size 12{ο} {} Phi Φ size 12{Φ} {} ϕ size 12{ϕ} {}
Delta Δ size 12{Δ} {} δ size 12{δ} {} Kappa Κ size 12{Κ} {} κ size 12{κ} {} Pi Π size 12{Π} {} π size 12{π} {} Chi Χ size 12{Χ} {} χ size 12{χ} {}
Epsilon Ε size 12{Ε} {} ε size 12{ε} {} Lambda Λ size 12{Λ} {} λ size 12{λ} {} Rho Ρ size 12{Ρ} {} ρ size 12{ρ} {} Psi Ψ size 12{Ψ} {} ψ size 12{ψ} {}
Zeta Ζ size 12{Ζ} {} ζ size 12{ζ} {} Mu Μ size 12{Μ} {} μ size 12{μ} {} Sigma Σ size 12{Σ} {} σ size 12{σ} {} Omega Ω size 12{ %OMEGA } {} ω size 12{ω} {}
Si units
Entity Abbreviation Name
Fundamental units Length m meter
Mass kg kilogram
Time s second
Current A ampere
Supplementary unit Angle rad radian
Derived units Force N = kg m / s 2 size 12{N="kg" cdot {m} slash {s rSup { size 8{2} } } } {} newton
Energy J = kg m 2 / s 2 size 12{J="kg" cdot {m rSup { size 8{2} } } slash {s rSup { size 8{2} } } } {} joule
Power W = J / s size 12{W= {J} slash {s} } {} watt
Pressure Pa = N / m 2 size 12{"Pa"= {N} slash {m rSup { size 8{2} } } } {} pascal
Frequency Hz = 1 / s size 12{"Hz"= {1} slash {s} } {} hertz
Electronic potential V = J / C size 12{V= {J} slash {C} } {} volt
Capacitance F = C / V size 12{F= {C} slash {V} } {} farad
Charge C = s A size 12{C=s cdot A} {} coulomb
Resistance Ω = V / A size 12{ %OMEGA = {V} slash {A} } {} ohm
Magnetic field T = N / A m size 12{T= {N} slash { left (A cdot m right )} } {} tesla
Nuclear decay rate Bq = 1 / s size 12{"Bq"= {1} slash {s} } {} becquerel
Selected british units
Length 1 inch ( in . ) = 2 . 54 cm ( exactly ) size 12{1" inch " \( "in" "." \) =2 "." "54"" cm " \( "exactly" \) } {}
1 foot ( ft ) = 0 . 3048 m size 12{1" foot " \( "ft" \) =0 "." "3048"" m"} {}
1 mile ( mi ) = 1 . 609 km size 12{1" mile " \( "mi" \) =1 "." "609"" km"} {}
Force 1 pound ( lb ) = 4 . 448 N size 12{1" pound " \( "lb" \) =4 "." "448"" N"} {}
Energy 1 British thermal unit ( Btu ) = 1 . 055 × 10 3 J size 12{1" British thermal unit " \( "Btu" \) =1 "." "055" times "10" rSup { size 8{3} } " J"} {}
Power 1 horsepower ( hp ) = 746 W size 12{1" horsepower " \( "hp" \) ="746"" W"} {}
Pressure 1 lb / in 2 = 6 . 895 × 10 3 Pa size 12{1 {"lb"} slash {"in" rSup { size 8{2} } } =6 "." "895" times "10" rSup { size 8{3} } " Pa"} {}
Other units
Length 1 light year ( ly ) = 9 . 46 × 10 15 m size 12{1`" light"`" year"` \( "ly" \) ` =9 "." "46" times "10" rSup { size 8{"15"} } " m"} {}
1 astronomical unit ( au ) = 1 . 50 × 10 11 m size 12{1`" astronomical"`" unit"` \( "au" \) ` =1 "." "50" times "10" rSup { size 8{"11"} } " m"} {}
1 nautical mile = 1 . 852 km size 12{1`" nautical"`" mile"` =1 "." "852"`" km"} {}
1 angstrom ( Å ) = 10 10 m size 12{1`" angstrom"` \( Å \) ` ="10" rSup { size 8{ - "10"} } " m"} {}
Area 1 acre ( ac ) = 4 . 05 × 10 3 m 2 size 12{1`" acre"` \( "ac" \) ` =4 "." "05" times "10" rSup { size 8{3} } " m" rSup { size 8{2} } } {}
1 square foot ( ft 2 ) = 9 . 29 × 10 2 m 2 size 12{1`"square"`"foot"` \( "ft" rSup { size 8{2} } \) ` =9 "." "29" times "10" rSup { size 8{ - 2} } " m" rSup { size 8{2} } } {}
1 barn ( b ) = 10 28 m 2 size 12{1`" barn"` \( b \) ` ="10" rSup { size 8{ - "28"} } " m" rSup { size 8{2} } } {}
Volume 1 liter ( L ) = 10 3 m 3 size 12{1`" liter"` \( L \) ` ="10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } } {}
1 U.S. gallon ( gal ) = 3 . 785 × 10 3 m 3 size 12{1`" U" "." S "." `" gallon"` \( "gal" \) ` =3 "." "785" times "10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } } {}
Mass 1 solar mass = 1 . 99 × 10 30 kg size 12{1`" solar"`" mass"` =1 "." "99" times "10" rSup { size 8{"30"} } " kg"} {}
1 metric ton = 10 3 kg size 12{1`" metric"`" ton"` ="10" rSup { size 8{3} } " kg"} {}
1 atomic mass unit ( u ) = 1 . 6605 × 10 27 kg size 12{1`" atomic"`" mass"`" unit"`` \( u \) ` =1 "." "6605" times "10" rSup { size 8{ - "27"} } " kg"} {}
Time 1 year ( y ) = 3 . 16 × 10 7 s size 12{1`" year"` \( y \) ` =3 "." "16" times "10" rSup { size 8{7} } " s"} {}
1 day ( d ) = 86 , 400 s size 12{1`" day"` \( d \) ` ="86","400"`" s"} {}
Speed 1 mile per hour ( mph ) = 1 . 609 km / h size 12{1`" mile"`"per"`"hour"` \( "mph" \) `=1 "." "609"` {"km"} slash {h} } {}
1 nautical mile per hour ( naut ) = 1 . 852 km / h size 12{1`" nautical"`"mile"`"per"`"hour"` \( "naut" \) `=1 "." "852"` {"km"} slash {h} } {}
Angle 1 degree ( ° ) = 1 . 745 × 10 2 rad size 12{1`" degree"` \( ° \) ` =1 "." "745" times "10" rSup { size 8{ - 2} } " rad"} {}
1 minute of arc ( ' ) = 1 / 60 degree size 12{1`" minute"`"of"`"arc"` { { \( }} sup { ' } \) `= {1} slash {"60"} `" degree"} {}
1 second of arc ( '' ) = 1 / 60 minute of arc size 12{1`" second"`"of"`"arc"` { { \( }} sup { '' } \) `= {1} slash {"60"`} " minute of arc"} {}
1 grad = 1 . 571 × 10 2 rad size 12{1`" grad"` =1 "." "571" times "10" rSup { size 8{ - 2} } " rad"} {}
Energy 1 kiloton TNT ( kT ) = 4 . 2 × 10 12 J size 12{1`" kiloton"`" TNT"` \( "kT" \) ` =4 "." 2 times "10" rSup { size 8{"12"} } " J"} {}
1 kilowatt hour ( kW h ) = 3 . 60 × 10 6 J size 12{1`" kilowatt"`" hour"` \( "kW" cdot h \) ` =3 "." "60" times "10" rSup { size 8{6} } " J"} {}
1 food calorie ( kcal ) = 4186 J size 12{1`" food"`"calorie"` \( "kcal" \) `="4186"`" J"} {}
1 calorie ( cal ) = 4 . 186 J size 12{1`" calorie"` \( "cal" \) `=4 "." "186"`" J"} {}
1 electron volt ( eV ) = 1 . 60 × 10 19 J size 12{1`" electron"`" volt"` \( "eV" \) ` =1 "." "60" times "10" rSup { size 8{ - "19"} } " J"} {}
Pressure 1 atmosphere ( atm ) = 1 . 013 × 10 5 Pa size 12{1`" atmosphere"` \( "atm" \) ` =1 "." "013" times "10" rSup { size 8{5} } " Pa"} {}
1 millimeter of mercury ( mm Hg ) = 133 . 3 Pa size 12{1`" millimeter"`"of"`"mercury"` \( "mm"`"Hg" \) `="133" "." 3`" Pa"} {}
1 torricelli ( torr ) = 1 mm Hg = 133 . 3 Pa size 12{1`" torricelli"` \( "torr" \) `=1`" mm"``"Hg "="133" "." 3`" Pa"} {}
Nuclear decay rate 1 curie ( Ci ) = 3 . 70 × 10 10 Bq size 12{1`" curie"` \( "Ci" \) ` =3 "." "70" times "10" rSup { size 8{"10"} } " Bq"} {}
Useful formulae
Circumference of a circle with radius r size 12{r} {} or diameter d size 12{d} {} C = 2 πr = πd size 12{C=2πr=πd} {}
Area of a circle with radius r size 12{r} {} or diameter d size 12{d} {} A = πr 2 = πd 2 / 4 size 12{A=πr rSup { size 8{2} } = {πd rSup { size 8{2} } } slash {4} } {}
Area of a sphere with radius r size 12{r} {} A = 4 πr 2 size 12{A=4πr rSup { size 8{2} } } {}
Volume of a sphere with radius r size 12{r} {} V = 4 / 3 πr 3 size 12{V= left ( {4} slash {3} right ) left (πr rSup { size 8{3} } right )} {}

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask