# System classifications and properties

 Page 1 / 1
Describes various classifications of systems.

## Introduction

In this module some of the basic classifications of systems will be briefly introduced and the most important propertiesof these systems are explained. As can be seen, the properties of a system provide an easy way to distinguish onesystem from another. Understanding these basic differences between systems, and their properties, will be a fundamentalconcept used in all signal and system courses. Once a set of systems can be identified as sharing particular properties, one no longer hasto reprove a certain characteristic of a system each time, but it can simply be known due to the the systemclassification.

## Continuous vs. discrete

One of the most important distinctions to understand is the difference between discrete time and continuous time systems. A system in which the input signal and output signal both have continuous domains is said to be a continuous system. One in which the input signal and output signal both have discrete domains is said to be a discrete system. Of course, it is possible to conceive of signals that belong to neither category, such as systems in which sampling of a continuous time signal or reconstruction from a discrete time signal take place.

## Linear vs. nonlinear

A linear system is any system that obeys the properties of scaling (first order homogeneity) and superposition (additivity) further described below. A nonlinear system is any system that does not have at least one of these properties.

To show that a system $H$ obeys the scaling property is to show that

$H(kf(t))=kH(f(t))$

To demonstrate that a system $H$ obeys thesuperposition property of linearity is to show that

$H({f}_{1}(t)+{f}_{2}(t))=H({f}_{1}(t))+H({f}_{2}(t))$

It is possible to check a system for linearity in a single (though larger) step. To do this, simply combine the firsttwo steps to get

$H({k}_{1}(){f}_{1}(t)+{k}_{2}(){f}_{2}(t))={k}_{1}()H({f}_{1}(t))+{k}_{2}()H({f}_{2}(t))$

## Time invariant vs. time varying

A system is said to be time invariant if it commutes with the parameter shift operator defined by ${S}_{T}\left(f\left(t\right)\right)=f\left(t-T\right)$ for all $T$ , which is to say

$H{S}_{T}={S}_{T}H$

for all real $T$ . Intuitively, that means that for any input function that produces some output function, any time shift of that input function will produce an output function identical in every way except that it is shifted by the same amount. Any system that does not have this property is said to be time varying.

## Causal vs. noncausal

A causal system is one in which the output depends only on current or past inputs, but not future inputs. Similarly, an anticausal system is one in which the output depends only on current or future inputs, but not past inputs. Finally, a noncausal system is one in which the output depends on both past and future inputs. All "realtime" systems must be causal, since they can not have future inputs available to them.

One may think the idea of future inputs does not seem to make much physical sense; however, we have only beendealing with time as our dependent variable so far, which is not always the case. Imagine rather that we wanted to doimage processing. Then the dependent variable might represent pixel positions to the left and right (the "future") of the currentposition on the image, and we would not necessarily have a causal system.

## Stable vs. unstable

There are several definitions of stability, but the one that will be used most frequently in this course will be bounded input, bounded output (BIBO) stability. In this context, a stable system is one in which the output is bounded if the input is also bounded. Similarly, an unstable system is one in which at least one bounded input produces an unbounded output.

Representing this mathematically, a stable system must have the following property, where $x(t)$ is the input and $y(t)$ is the output. The output must satisfy the condition

$\left|y(t)\right|\le {M}_{y}()$
whenever we have an input to the system that satisfies
$\left|x(t)\right|\le {M}_{x}()$
${M}_{x}$ and ${M}_{y}$ both represent a set of finite positive numbers and these relationships hold for all of $t$ . Otherwise, the system is unstable.

## System classifications summary

This module describes just some of the many ways in which systems can be classified. Systems can be continuous time, discrete time, or neither. They can be linear or nonlinear, time invariant or time varying, and stable or unstable. We can also divide them based on their causality properties. There are other ways to classify systems, such as use of memory, that are not discussed here but will be described in subsequent modules.

find the 15th term of the geometric sequince whose first is 18 and last term of 387
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!