<< Chapter < Page Chapter >> Page >

The inverter configuration of Fig. 10.21a is perhaps the simplest of H-bridge configurations which provide regeneration capability. Its main disadvantage is that it requires two switches per phase. In many applications, the cost of the switches (and their associated drive circuitry) dominates the cost of the inverter, and the result is that this configuration is less attractive in terms of cost when compared to other configurations which require one switch per phase.

Figure 10.21b shows one such configuration. This configuration requires a split supply (i.e., two supplies of voltage V 0 size 12{V rSub { size 8{0} } } {} ) but only a single switch and diode per phase.

Closing switch S 1 connects the phase-1 winding to the upper dc source. Opening the switch causes the phase current to transfer to diode D 1, connecting the winding to the bottom dc source. Phase 1 is thus supplied by the upper dc source and regenerates through the bottom source. Note that to maintain symmetry and to balance the energy supplied from each source equally, phase 2 is connected oppositely so that it is supplied from the bottom source and regenerates into the top source.

The major disadvantages of the configuration of Fig. 10.21b are that it requires a split supply and that when the switch is opened, the switch must withstand a voltage of 2 V 0 size 12{V rSub { size 8{0} } } {} . This can be readily seen by recognizing that when diode D 1 is forward-biased, the switch is connected across the two supplies. Such switches are likely to be more expensive than the switches required by the configuration of Fig. 10.21a. Both of these issues will tend to offset some of the economic advantage which can be gained by the elimination of one switch and one diode as compared with the inverter circuit of Fig. 10.21a.

A third inverter configuration is shown in Fig. 10.21c. This configuration requires only a single dc source and uses only a single switch and diode per phase. This configuration achieves regeneration through the use of bifilar phase windings. In a bifilar winding, each phase is wound with two separate windings which are closely coupled magnetically (this can be achieved by winding the two windings at the same time) and can be thought of as the primary and secondary windings of a transformer.

When switch S 1 is closed, the primary winding of phase 1 is energized, exciting the phase winding. Opening the switch induces a voltage in the secondary winding (note the polarity indicated by the dots in Fig. 11.23c) in such a direction as to forwardbias D 1. The result is that current is transferred from the primary to the secondary winding with a polarity such that the current in the phase decays to zero and energy is returned to the source.

Although this configuration requires only a single dc source, it requires a switch which must withstand a voltage in excess of 2 V 0 size 12{V rSub { size 8{0} } } {} (the degree of excess being determined by the voltage developed across the primary leakage reactance as current is switched from the primary to the secondary windings) and requires the more complex bifilar winding in the machine. In addition, the switches in this configuration must include snubbing circuitry (typically consisting of a resistor-capacitor combination) to protect them from transient overvoltages. These overvoltages result from the fact that although the two windings of the bifilar winding are wound such that they are as closely coupled as possible, perfect coupling cannot be achieved. As a result, there will be energy stored in the leakage fields of the primary winding which must be dissipated when the switch is opened.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Electrical machines. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10767/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Electrical machines' conversation and receive update notifications?

Ask