<< Chapter < Page Chapter >> Page >

Assessering

LU 3
Ruimte en Vorm (meetkunde)Die leerder is in staat om eienskappe van en verwantskappe tussen tweedimensionele vorms en driedimensionele voorwerpe in ‘n verskeidenheid oriëntasies en posisies te beskryf en voor te stel.
Dit is duidelik wanneer die leerder:
3.2 die onderlinge verwantskappe van meetkundige figure en driedimensionele voorwerpe se eienskappe beskryf met bewyse in kontekste, insluitend dié wat gebruik kan word om ’n bewustheid van sosiale, kulturele en omgewingsake te bevorder, insluitend:
3.2.2 transformasies;
3.3 die meetkunde van reguitlyne en driehoeke gebruik om probleme op te los en verwantskappe in meetkundige figure te bewys;te beskryf, insluitend:
3.4 meetkundige figure teken en/of konstrueer en modelle van driedimensionele voorwerpe maak om die eienskappe daarvan en van modelsituasies in die omgewing te ondersoek en te vergelyk.

Memorandum

Vierhoeke

Bespreking

Woordeskat

In hierdie leereenheid kom heelwat nuwe terme by. Party leerders sal reeds die woorde begryp, ander sal moet bygebring word. Wees waaksaam – baie woorde wat in algemene gebruik is, het dikwels ‘n meer beperkte gebruik in ‘n wiskundige konteks.

Benadering

Daar word van die leerders verwag om te doen sodat hulle werklik kan begryp wat die vierhoeke behels. Moedig hulle aan om te eksperimenteer totdat hulle die eienskappe goed verstaan. Op hierdie stadium kan hulle begin om ‘n samevatting van meetkundige grondbeginsels op te bou vir eie gebruik in die senior fase.

Baie leerders vind ruimtelike konsepte moeilik – hulle het dalk ekstra hulp nodig by basiese werk soos die noukeurige meet van lynlengtes en hoeke. Dis ‘n goeie rede om meer aandag aan hierdie aspekte te wy, in plaas daarvan om dit te ignoreer. Dit is tog belangrike lewensvaardighede. Maak seker dat daar ‘n paar ekstra bruikbare liniale en gradeboë in die klas is.

Die diagramblaaie kan gekopieer word, sodat elke leerder toegang het tot soveel as hy benodig om werklik die stryd aan te sê met probleemoplossing in meetkunde. Die basis wat nou gelê word, sal groot gevolge hê in die senior fase.

1.2 Die stippellyn in die ruit is NIE ‘n simmetrie-lyn nie – ‘n mens kan net die figuur langs die lyn vou om dit te bevestig.

1.4 Daar is verbasend min verskille tussen die reghoek en die vierkant. As ons later ‘n tabel maak, sal dit duidelik daaruit blyk.

1.5 ‘n Mens moet versigtig wees dat leerders nie aanneem dat trapesiums simmetries moet wees nie. Maak ook seker dat hulle nie onder die algemene vals indruk verkeer dat ewewydige lyne dieselfde lengte moet hê nie.

1.6 Die stippellyn in die vlieër is eintlik ‘n hoeklyn – dit is ongewoon dat hoeklyne buite die figuur lê. Dit is nie ‘n simmetrie-lyn nie, inderwaarheid stem dit ooreen met die “kort” hoeklyn van die ander vlieër. Hier langsaan is ‘n vlieër waar die kort hoeklyn ook die simmetrie-lyn is.

2. Ja, ‘n ruit IS ‘n parallelogram.

3. ‘n Baie interessante vraag – die ooglopende antwoord is om een van die nie-ewewydige sye parallel aan die teenoorstaande sy te maak. MAAR die gevolg daarvan is dat die lengte van een van die ewewydige sye dan verander. Dus, twee sye sal moet verander.

4. Herinner die leerders aan die stelling dat ko-binnehoeke by ewewydige lyne supplementêr is. Wys gerus die leerders weer dat ‘n vierhoek in twee driehoeke verdeel kan word om te bewys dat die som van die binnehoeke van enige vierhoek 360° is. Benewens die eienskappe van die hoeklyne van die vierhoeke, is hulle van belang aangesien hulle vierhoeke in driehoeke verdeel – en die leerders ken reeds baie tegnieke om op driehoeke toe te pas.

Wanneer leerders die tabel invul, moet hulle dit eers in potlood doen – hulle sal sekerlik nie perfekte antwoorde hê nie, maar as hulle klaar is moet hulle in besit wees van ‘n korrekte en bruikbare instrument.

Die oefening om vierhoeke te vergelyk het nie net een stel korrekte antwoorde ten doel nie; vierhoeke is baie aanpasbaar. Die eintlike waarde in die oefening is dat leerders moet gewoond word om hulle antwoorde te motiveer met die doel om ‘n aanhoorder te oortuig. Die beste rol vir die opvoeder is om gedurig te vra, “Waarom sê jy so?”, en om die groeplede aan te moedig om nie stellings van mekaar te aanvaar sonder verduidelik en motivering nie. Hierdie vaardigheid (om in staat te wees om jou bewerings te staaf) is algemeen van toepassing en van belang.

In ander boeke word die definisies van vierhoeke dalk in ander volgordes gegee. Hier is niks mee fout nie. Op hierdie stadium kan die leerders ‘n taak gegee word om die uitgeknipte vierhoeke in ‘n struktuur van verwantskappe te plaas, en in te plak.

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11055/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 9' conversation and receive update notifications?

Ask