<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define diffusion, osmosis, dialysis, and active transport.
  • Calculate diffusion rates.

Diffusion

There is something fishy about the ice cube from your freezer—how did it pick up those food odors? How does soaking a sprained ankle in Epsom salt reduce swelling? The answer to these questions are related to atomic and molecular transport phenomena—another mode of fluid motion. Atoms and molecules are in constant motion at any temperature. In fluids they move about randomly even in the absence of macroscopic flow. This motion is called a random walk and is illustrated in [link] . Diffusion is the movement of substances due to random thermal molecular motion. Fluids, like fish fumes or odors entering ice cubes, can even diffuse through solids.

Diffusion is a slow process over macroscopic distances. The densities of common materials are great enough that molecules cannot travel very far before having a collision that can scatter them in any direction, including straight backward. It can be shown that the average distance x rms size 12{x rSub { size 8{"rms"} } } {} that a molecule travels is proportional to the square root of time:

x rms = 2 Dt , size 12{x rSub { size 8{"rms"} } = sqrt {2 ital "Dt"} } {}

where x rms stands for the root-mean-square distance and is the statistical average for the process. The quantity D size 12{D} {} is the diffusion constant for the particular molecule in a specific medium. [link] lists representative values of D size 12{D} {} for various substances, in units of m 2 /s size 12{m rSup { size 8{2} } "/s"} {} .

The figure shows the path of a random walk. The random thermal motion of a molecule is shown to begin at a start point and then the particles move about zigzag in all directions and end up at the finish point. The distance between the start and finish point is shown as x. Continuous arrows show various directions of motion.
The random thermal motion of a molecule in a fluid in time t size 12{t} {} . This type of motion is called a random walk.
Diffusion constants for various molecules At 20°C and 1 atm
Diffusing molecule Medium D (m 2 /s)
Hydrogen ( H 2 ) Air 6.4 × 10 –5
Oxygen ( O 2 ) Air 1.8 × 10 –5
Oxygen ( O 2 ) Water 1.0 × 10 –9
Glucose ( C 6 H 12 O 6 ) Water 6.7 × 10 –10
Hemoglobin Water 6.9 × 10 –11
DNA Water 1.3 × 10 –12

Note that D size 12{D} {} gets progressively smaller for more massive molecules. This decrease is because the average molecular speed at a given temperature is inversely proportional to molecular mass. Thus the more massive molecules diffuse more slowly. Another interesting point is that D size 12{D} {} for oxygen in air is much greater than D size 12{D} {} for oxygen in water. In water, an oxygen molecule makes many more collisions in its random walk and is slowed considerably. In water, an oxygen molecule moves only about 40 μ m in 1 s. (Each molecule actually collides about 10 10 size 12{"10" rSup { size 8{"10"} } } {} times per second!). Finally, note that diffusion constants increase with temperature, because average molecular speed increases with temperature. This is because the average kinetic energy of molecules, 1 2 mv 2 size 12{ { { size 8{1} } over { size 8{2} } } ital "mv" rSup { size 8{2} } } {} , is proportional to absolute temperature.

Calculating diffusion: how long does glucose diffusion take?

Calculate the average time it takes a glucose molecule to move 1.0 cm in water.

Strategy

We can use x rms = 2 D t size 12{x rSub { size 8{"rms"} } = sqrt {2 ital "Dt"} } {} , the expression for the average distance moved in time t size 12{t} {} , and solve it for t size 12{t} {} . All other quantities are known.

Solution

Solving for t size 12{t} {} and substituting known values yields

t = x rms 2 2 D = ( 0.010 m ) 2 2 ( 6 . 7 × 10 10 m 2 /s ) = 7 . 5 × 10 4 s = 21 h .

Discussion

This is a remarkably long time for glucose to move a mere centimeter! For this reason, we stir sugar into water rather than waiting for it to diffuse.

Got questions? Get instant answers now!

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask