<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Operations with algebraic expressions and numerical evaluations are introduced in this chapter. Coefficients are described rather than merely defined. Special binomial products have both literal and symbolic explanations and since they occur so frequently in mathematics, we have been careful to help the student remember them. In each example problem, the student is "talked" through the symbolic form.Objectives of this module: be able to expand (a + b)^2, (a - b)^2, and (a + b)(a - b).

Overview

  • Expanding ( a + b ) 2 and ( a b ) 2
  • Expanding ( a + b ) ( a b )

Three binomial products occur so frequently in algebra that we designate them as special binomial products . We have seen them before (Sections [link] and [link] ), but we will study them again because of their importance as time saving devices and in solving equations (which we will study in a later chapter).

These special products can be shown as the squares of a binomial

( a + b ) 2      and      ( a b ) 2

and as the sum and difference of two terms .

( a + b ) ( a b )

There are two simple rules that allow us to easily expand (multiply out) these binomials. They are well worth memorizing, as they will save a lot of time in the future.

Expanding ( a + b ) 2 And ( a b ) 2

Squaring a binomial

To square a binomial: *

  1. Square the first term.
  2. Take the product of the two terms and double it.
  3. Square the last term.
  4. Add the three results together.

( a + b ) 2 = a 2 + 2 a b + b 2 ( a b ) 2 = a 2 2 a b + b 2

Expanding ( a + b ) ( a b )

Sum and difference of two terms

To expand the sum and difference of two terms:

  1. Square the first term and square the second term.
  2. Subtract the square of the second term from the square of the first term.

( a + b ) ( a b ) = a 2 b 2


* See problems 56 and 57 at the end of this section.
See problem 58.

Sample set a

( x + 4 ) 2 Square the first term:    x 2 . The product of both terms is 4 x . Double it:    8 x . Square the last term:   16 . Add them together:    x 2 + 8 x + 16. ( x + 4 ) 2 = x 2 + 8 x + 16

Note that ( x + 4 ) 2 x 2 + 4 2 . The 8 x term is missing!

Got questions? Get instant answers now!

( a 8 ) 2 Square the first term:    a 2 . The product of both terms is 8 a . Double it:    16 a . Square the last term:    64. Add them together:    a 2 + ( 16 a ) + 64. ( a 8 ) 2 = a 2 16 a + 64

Notice that the sign of the last term in this expression is “ + .” This will always happen since the last term results from a number being squared . Any nonzero number times itself is always positive.

( + ) ( + ) = +    and    ( ) ( ) = +

The sign of the second term in the trinomial will always be the sign that occurs inside the parentheses.

Got questions? Get instant answers now!

( y 1 ) 2 Square the first term:    y 2 . The product of both terms is y . Double it:    2 y . Square the last term:    + 1. Add them together:    y 2 + ( 2 y ) + 1.

The square of the binomial 'y minus one' is equal to y squared minus two y plus one. The sign inside the parentheses and the sign of the middle term of the trinomial are the same, and are labeled as 'minus.' The sign of the last term of the trinomial is labeled as 'plus.'

Got questions? Get instant answers now!

( 5 x + 3 ) 2 Square the first term:    25 x 2 . The product of both terms is 15 x . Double it:    30 x . Square the last term:   9 . Add them together:    25 x 2 + 30 x + 9.

The square of the binomial 'five x plus three' is equal to twenty five x squared plus thirty x plus nine. The sign inside the parentheses and the sign of the middle term of the trinomial are the same, and are labeled as 'plus.' The sign of the last term of the trinomial is also labeled as 'plus.'

Got questions? Get instant answers now!

( 7 b 2 ) 2 Square the first term:    49 b 2 . The product of both terms is 14 b . Double it:    28 b . Square the last term:   4 . Add them together:    49 b 2 + ( 28 b ) + 4.

The square of the binomial 'seven b minus two' is equal to forty-nine b squared minus twenty-eight b plus four. The sign inside the parentheses and the sign of the middle term of the trinomial are the same, and are labeled as 'minus.' The sign of the last term of the trinomial is labeled as 'plus.'

Got questions? Get instant answers now!

( x + 6 ) ( x 6 ) Square the first term: x 2 . Subtract the square of the second term ( 36 ) from the square of the first term: x 2 36. ( x + 6 ) ( x 6 ) = x 2 36

Got questions? Get instant answers now!

( 4 a 12 ) ( 4 a + 12 ) Square the first term: 16 a 2 . Subtract the square of the second term ( 144 ) from the square of the first term: 16 a 2 144. ( 4 a 12 ) ( 4 a + 12 ) = 16 a 2 144

Got questions? Get instant answers now!

( 6 x + 8 y ) ( 6 x 8 y ) Square the first term: 36 x 2 . Subtract the square of the second term ( 64 y 2 ) from the square of the first term: 36 x 2 64 y 2 . ( 6 x + 8 y ) ( 6 x 8 y ) = 36 x 2 64 y 2

Got questions? Get instant answers now!

Practice set a

Find the following products.

( x + 5 ) 2

x 2 + 10 x + 25

Got questions? Get instant answers now!

( x + 7 ) 2

x 2 + 14 x + 49

Got questions? Get instant answers now!

( y 6 ) 2

y 2 12 y + 36

Got questions? Get instant answers now!

( 3 a + b ) 2

9 a 2 + 6 a b + b 2

Got questions? Get instant answers now!

( 9 m n ) 2

81 m 2 18 m n + n 2

Got questions? Get instant answers now!

( 10 x 2 y ) 2

100 x 2 40 x y + 4 y 2

Got questions? Get instant answers now!

( 12 a 7 b ) 2

144 a 2 168 a b + 49 b 2

Got questions? Get instant answers now!

( 5 h 15 k ) 2

25 h 2 150 h k + 225 k 2

Got questions? Get instant answers now!

Exercises

For the following problems, find the products.

( x + 3 ) 2

x 2 + 6 x + 9

Got questions? Get instant answers now!

( x + 8 ) 2

x 2 + 16 x + 64

Got questions? Get instant answers now!

( y + 9 ) 2

y 2 + 18 y + 81

Got questions? Get instant answers now!

( a 4 ) 2

a 2 8 a + 16

Got questions? Get instant answers now!

( a 7 ) 2

a 2 14 a + 49

Got questions? Get instant answers now!

( b + 15 ) 2

b 2 + 30 b + 225

Got questions? Get instant answers now!

( x 12 ) 2

x 2 24 x + 144

Got questions? Get instant answers now!

( y 20 ) 2

y 2 40 y + 400

Got questions? Get instant answers now!

( 4 x + 2 ) 2

16 x 2 + 16 x + 4

Got questions? Get instant answers now!

( 7 x 2 ) 2

49 x 2 28 x + 4

Got questions? Get instant answers now!

( 3 a 9 ) 2

9 a 2 54 a + 81

Got questions? Get instant answers now!

( 5 a 3 b ) 2

25 a 2 30 a b + 9 b 2

Got questions? Get instant answers now!

( 2 h 8 k ) 2

4 h 2 32 h k + 64 k 2

Got questions? Get instant answers now!

( a + 1 3 ) 2

a 2 + 2 3 a + 1 9

Got questions? Get instant answers now!

( x + 2 5 ) 2

x 2 + 4 5 x + 4 25

Got questions? Get instant answers now!

( y 5 6 ) 2

y 2 5 3 y + 25 36

Got questions? Get instant answers now!

( x + 1.3 ) 2

x 2 + 2.6 x + 1.69

Got questions? Get instant answers now!

( a + 0.5 ) 2

a 2 + a + 0.25

Got questions? Get instant answers now!

( x 3.1 ) 2

x 2 6.2 x + 9.61

Got questions? Get instant answers now!

( b 0.04 ) 2

b 2 0.08 b + 0.0016

Got questions? Get instant answers now!

( x + 5 ) ( x 5 )

x 2 25

Got questions? Get instant answers now!

( x + 1 ) ( x 1 )

x 2 1

Got questions? Get instant answers now!

( f + 9 ) ( f 9 )

f 2 81

Got questions? Get instant answers now!

( 2 y + 3 ) ( 2 y 3 )

4 y 2 9

Got questions? Get instant answers now!

( 5 x + 6 ) ( 5 x 6 )

Got questions? Get instant answers now!

( 2 a 7 b ) ( 2 a + 7 b )

4 a 2 49 b 2

Got questions? Get instant answers now!

( 7 x + 3 t ) ( 7 x 3 t )

Got questions? Get instant answers now!

( 5 h 2 k ) ( 5 h + 2 k )

25 h 2 4 k 2

Got questions? Get instant answers now!

( x + 1 3 ) ( x 1 3 )

Got questions? Get instant answers now!

( a + 2 9 ) ( a 2 9 )

a 2 4 81

Got questions? Get instant answers now!

( x + 7 3 ) ( x 7 3 )

Got questions? Get instant answers now!

( 2 b + 6 7 ) ( 2 b 6 7 )

4 b 2 36 49

Got questions? Get instant answers now!

Expand ( a + b ) 2 to prove it is equal to a 2 + 2 a b + b 2 .

Got questions? Get instant answers now!

Expand ( a b ) 2 to prove it is equal to a 2 2 a b + b 2 .

( a b ) ( a b ) = a 2 a b a b + b 2 = a 2 2 a b + b 2

Got questions? Get instant answers now!

Expand ( a + b ) ( a b ) to prove it is equal to a 2 b 2 .

Got questions? Get instant answers now!

Fill in the missing label in the equation below.

The square of the binomial 'a plus b' is equal to a squared plus two ab plus b squared. Fill in the missing labels for the equation. See the longdesc for a full description.

first term squared

Got questions? Get instant answers now!

Label the parts of the equation below.

The square of the binomial 'a minus b' is equal to a squared minus two ab plus b squared. Fill in the missing labels for the equation. See the longdesc for a full description.

Got questions? Get instant answers now!

Label the parts of the equation below.

The product of the binomial 'a plus b' and the binomial 'a minus b' is equal to a squared minus b squared. Fill in the missing labels for the equation. See the longdesc for a full description.

(a) Square the first term.
(b) Square the second term and subtract it from the first term.

Got questions? Get instant answers now!

Exercises for review

( [link] ) Simplify ( x 3 y 0 z 4 ) 5 .

Got questions? Get instant answers now!

( [link] ) Find the value of 10 1 2 3 .

1 80

Got questions? Get instant answers now!

( [link] ) Find the product. ( x + 6 ) ( x 7 ) .

Got questions? Get instant answers now!

( [link] ) Find the product. ( 5 m 3 ) ( 2 m + 3 ) .

10 m 2 + 9 m 9

Got questions? Get instant answers now!

( [link] ) Find the product. ( a + 4 ) ( a 2 2 a + 3 ) .

Got questions? Get instant answers now!

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
in a comparison of the stages of meiosis to the stage of mitosis, which stages are unique to meiosis and which stages have the same event in botg meiosis and mitosis
Leah Reply
Researchers demonstrated that the hippocampus functions in memory processing by creating lesions in the hippocampi of rats, which resulted in ________.
Mapo Reply
The formulation of new memories is sometimes called ________, and the process of bringing up old memories is called ________.
Mapo Reply
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.
QuizOver Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask