<< Chapter < Page Chapter >> Page >

Vì hầu hết khối kim loại đều có cùng điện thế V0 tương ứng với thế năng U0=-eV0 nên ta có thể giả sử khối kim loại là một khối đẳng thế V0. Nhưng điện thế tùy thuộc vào một hằng số cộng nên ta có thể chọn V0 làm điện thế gốc (V0=0V). Gọi EB là chiều cao của rào thế năng giữa bên trong và bên ngoài kim loại. Một điện tử bên trong khối kim loại muốn vượt ra ngoài phải có ít nhất một năng lượng U=EB, vì vậy ta cần phải biết sự phân bố của điện tử theo năng lượng.

Sự phân bố của điện tử theo năng lượng:

Gọi nE= là số điện tử trong một đơn vị thể tích có năng lượng từ E đến E+E. Theo định nghĩa, mật độ điện tử trung bình có năng lượng từ E đến E+E là tỉ số Δn E ΔE size 12{ { {Δn rSub { size 8{E} } } over {ΔE} } } {} . Giới hạn của tỉ số này khi ΔE 0 size 12{ΔE rightarrow 0} {} gọi là mật độ điện tử có năng lượng E.

Ta có: ρ ( E ) = lim ΔE 0 Δn E ΔE = dn E dE ( 1 ) size 12{ρ \( E \) = {"lim"} cSub { size 8{ΔE rightarrow 0} } { {Δn rSub { size 8{E} } } over {ΔE} } = { { ital "dn" rSub { size 8{E} } } over { ital "dE"} } " " \( 1 \) } {}

Vậy, dn E = ρ ( E ) . dE ( 2 ) size 12{ ital "dn" rSub { size 8{E} } =ρ \( E \) "." ital "dE"" " \( 2 \) } {}

Do đó, nếu ta biết được hàm số ρ ( E ) size 12{ρ \( E \) } {} ta có thể suy ra được số điện tử có năng lượng trong khoảng từ E đến E+dE bằng biểu thức (2). Ta thấy rằng (E) chính là số trạng thái năng lượng E đã bị điện tử chiếm. Nếu gọi n(E) là số trạng thái năng lượng có năng lượng E mà điện tử có thể chiếm được. Người ta chứng minh được rằng: tỉ số ρ ( E ) n ( E ) size 12{ { {ρ \( E \) } over {n \( E \) } } } {} bằng một hàm số f(E), có dạng:

f ( E ) = ρ ( E ) n ( E ) = 1 1 + e E E F KT size 12{f \( E \) = { {ρ \( E \) } over {n \( E \) } } = { {1} over {1+e rSup { size 8{ { {E - E rSub { size 6{F} } } over { ital "KT"} } } } } } } {}

Trong đó, K=1,381.10-23 J/0K (hằng số Boltzman)

K = 1, 381 . 10 23 e = 8, 62 . 10 5 ( V/ 0 K ) size 12{K= { {1,"381" "." "10" rSup { size 8{ - "23"} } } over {e} } =8,"62" "." "10" rSup { size 8{ - 5} } " " \( "V/" rSup { size 8{0} } K \) } {}

EF năng lượng Fermi, tùy thuộc vào bản chất kim loại.

Mức năng lượng này nằm trong dải cấm.

Ở nhiệt độ rất thấp (T00K)

Nếu E<EF, ta có f(E)=1

Nếu E>EF, ta có f(E)=0

Vậy f(E) chính là xác suất để tìm thấy điện tử có năng lượng E ở nhiệt độ T.

Hình sau đây là đồ thị của f(E) theo E khi T00K và khi T=2.5000K.

Ta chấp nhận rằng:

N ( E ) = γ . E 1 2 size 12{N \( E \) =γ "." E rSup { size 8{ { {1} over {2} } } } } {}  là hằng số tỉ lệ.

Lúc đó, mật độ điện tử có năng lượng E là:

ρ ( E ) = f ( E ) . N ( E ) = γ . E 1 2 . f ( E ) size 12{ρ \( E \) =f \( E \) "." N \( E \) =γ "." E { {1} over {2} } "." f \( E \) } {}

Hình trên là đồ thị của (E) theo E tương ứng với nhiệt độ T=00K và T=2.5000K.

Ta thấy rằng hàm (E) biến đổi rất ít theo nhiệt độ và chỉ biến đổi trong vùng cận của năng lượng EF. Do đó, ở nhiệt độ cao (T=2.5000K) có một số rất ít điện tử có năng lượng lớn hơn EF, hầu hết các điện tử đều có năng lượng nhỏ hơn EF. Diện tích giới hạn bởi đường biểu diễn của (E) và trục E cho ta số điện tử tự do n chứa trong một đơn vị thể tích.

n = 0 E F ρ ( E ) . dE = 0 E F γ . E 1 2 . dE = 2 3 γ . E F 3 2 size 12{n= Int cSub { size 8{0} } cSup { size 8{E rSub { size 6{F} } } } {ρ \( E \) "." ital "dE"} = Int cSub {0} cSup {E rSub { size 6{F} } } {γ "." E rSup { { {1} over {2} } } size 12{ "." ital "dE"= { {2} over {3} } γ "." E rSub {F} rSup { { {3} over {2} } } }} } {}

(Để ý là f(E)=1 và T=00K)

Từ đây ta suy ra năng lượng Fermi EF

E F = 3 2 . n γ 2 3 size 12{E rSub { size 8{F} } = left ( { {3} over {2} } "." { {n} over {γ} } right ) rSup { size 8{ { {2} over {3} } } } } {}

Nếu ta dùng đơn vị thể tích là m3 và đơn vị năng lượng là eV thì  có trị số là:

 = 6,8.1027

Do đó, E F = 3, 64 . 10 19 . n 2 3 size 12{E rSub { size 8{F} } =3,"64" "." "10" rSup { size 8{ - "19"} } "." n rSup { size 8{ { {2} over {3} } } } } {}

Nếu biết được khối lượng riêng của kim loại và số điện tử tự do mà mỗi nguyên tử có thể nhả ra, ta tính được n và từ đó suy ra EF. Thông thường EF<10eV.

Thí dụ, khối lượng riêng của Tungsten là d = 18,8g/cm3, nguyên tử khối là A = 184, biết rằng mỗi nguyên tử cho v = 2 điện tử tự do. Tính năng lượng Fermi.

Giải: Khối lượng mỗi cm3 là d, vậy trong mỗt cm3 ta có một số nguyên tử khối là d/A. Vậy trong mỗi cm3, ta có số nguyên tử thực là:

d A . A 0 size 12{ { {d} over {A} } "." A rSub { size 8{0} } } {} với A0 là số Avogadro (A0 = 6,023.1023)

Mỗi nguyên tử cho v = 2 điện tử tự do, do đó số điện tử tự do trong mỗi m3 là:

n = d A . A 0 . v . 10 6 size 12{n= { {d} over {A} } "." A rSub { size 8{0} } "." v "." "10" rSup { size 8{6} } } {}

Với Tungsten, ta có:

n = 18 , 8 184 . 6, 203 . 10 23 . 2 . 10 6 1, 23 . 10 29 size 12{n= { {"18",8} over {"184"} } "." 6,"203" "." "10" rSup { size 8{"23"} } "." 2 "." "10" rSup { size 8{6} } approx 1,"23" "." "10" rSup { size 8{"29"} } } {} điện tử/m3

E F = 3, 64 . 10 19 . 1, 23 . 10 29 2 3 size 12{ drarrow E rSub { size 8{F} } =3,"64" "." "10" rSup { size 8{ - "19"} } "." left (1,"23" "." "10" rSup { size 8{"29"} } right ) rSup { size 8{ { {2} over {3} } } } } {}

E F 8, 95 eV size 12{ drarrow E rSub { size 8{F} } approx 8,"95" ital "eV"} {}

Công ra (hàm công):

Ta thấy rằng ở nhiệt độ thấp (T 00K), năng lượng tối đa của điện tử là EF (E<EF<EB), do đó, không có điện tử nào có năng lượng lớn hơn rào thế năng EB, nghĩa là không có điện tử nào có thể vượt ra ngoài khối kim loại. Muốn cho điện tử có thể vượt ra ngoài, ta phải cung cấp cho điện tử nhanh nhất một năng lượng là:

EW = EB-EF

EW được gọi là công ra của kim loại.

Nếu ta nung nóng khối kim loại tới nhiệt độ T=2.5000K, sẽ có một số điện tử có năng lượng lớn hơn EB­, các điện tử này có thể vượt được ra ngoài kim loại. Người ta chứng minh được rằng, số điện tử vượt qua mỗi đơn vị diện tích trong một đơn vị thời gian là:

J th = A 0 T 2 e E w KT size 12{J rSub { size 8{ ital "th"} } =A rSub { size 8{0} } T rSup { size 8{2} } e rSup { size 8{ { { - E rSub { size 6{w} } } over { ital "KT"} } } } } {} Trong đó, A0 = 6,023.1023 và K = 1,38.10-23 J/0K

Đây là phương trình Dushman-Richardson.

Người ta dùng phương trình này để đo EW vì ta có thể đo được dòng điện Jth; dòng điện này chính là dòng điện bảo hòa trong một đèn hai cực chân không có tim làm bằng kim loại muốn khảo sát.

Điện thế tiếp xúc (tiếp thế):

Xét một nối C giữa hai kim loại I và II. Nếu ta dùng một Volt kế nhạy để đo hiệu điện thế giữa hai đầu của nối (A và B), ta thấy hiệu số điện thế này không triệt tiêu, theo định nghĩa, hiệu điện thế này gọi là tiếp thế. Ta giải thích tiếp thế như sau:

Giả sử kim loại I có công ra EW1 nhỏ hơn công ra EW2 của kim loại II. Khi ta nối hai kim loại với nhau, điện tử sẽ di chuyển từ (I) sang (II) làm cho có sự tụ tập điện tử bên (II) và có sự xuất hiện các Ion dương bên (I). Cách phân bố điện tích như trên tạo ra một điện trường Ei hướng từ (I) sang (II) làm ngăn trở sự di chuyển của điện tử. Khi Ei đủ mạnh, các điện tử không di chuyển nữa, ta có sự cân bằng nhiệt động học của hệ thống hai kim loại nối với nhau. Sự hiện hữu của điện trường Ei chứng tỏ có một hiệu điện thế giữa hai kim loại.

Questions & Answers

how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Điện tử ứng dụng. OpenStax CNX. Jul 31, 2009 Download for free at http://cnx.org/content/col10866/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Điện tử ứng dụng' conversation and receive update notifications?

Ask