# Projectile motion  (Page 5/16)

 Page 5 / 16
$t=\frac{-b±\sqrt{{b}^{2}-4\text{ac}}}{\text{2}\text{a}}\text{.}$

This equation yields two solutions: $t=3.96$ and $t=–1.03$ . (It is left as an exercise for the reader to verify these solutions.) The time is $t=3.96\phantom{\rule{0.25em}{0ex}}\text{s}$ or $–1.03\phantom{\rule{0.25em}{0ex}}\text{s}$ . The negative value of time implies an event before the start of motion, and so we discard it. Thus,

$t=3\text{.}\text{96 s}\text{.}$

Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical velocity of 14.3 m/s and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)

From the information now in hand, we can find the final horizontal and vertical velocities ${v}_{x}$ and ${v}_{y}$ and combine them to find the total velocity $v$ and the angle ${\theta }_{0}$ it makes with the horizontal. Of course, ${v}_{x}$ is constant so we can solve for it at any horizontal location. In this case, we chose the starting point since we know both the initial velocity and initial angle. Therefore:

${v}_{x}={v}_{0}\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}{\theta }_{0}=\left(\text{25}\text{.}0 m/s\text{}\right)\left(\text{cos 35º}\right)=\text{20}\text{.}5 m/s.\text{}$

The final vertical velocity is given by the following equation:

${v}_{y}={v}_{0y}-\text{gt,}$

where ${v}_{0y}$ was found in part (a) to be . Thus,

${v}_{y}=\text{14}\text{.}3 m/s\text{}-\left(9\text{.}\text{80 m/s}{\text{}}^{2}\right)\left(3\text{.}\text{96 s}\text{}\right)$

so that

${v}_{y}=-\text{24}\text{.}5 m/s.\text{}$

To find the magnitude of the final velocity $v$ we combine its perpendicular components, using the following equation:

$v=\sqrt{{v}_{x}^{2}+{v}_{y}^{2}}=\sqrt{\left(\text{20}\text{.}5 m/s\text{}{\right)}^{2}+\left(-\text{24}\text{.}5 m/s\text{}{\right)}^{2}}\text{,}$

which gives

$v=\text{31}\text{.}9 m/s.\text{}$

The direction ${\theta }_{v}$ is found from the equation:

${\theta }_{v}={\text{tan}}^{-1}\left({v}_{y}/{v}_{x}\right)$

so that

${\theta }_{v}={\text{tan}}^{-1}\left(-\text{24}\text{.}5/\text{20}\text{.}5\right)={\text{tan}}^{-1}\left(-1\text{.}\text{19}\right)\text{.}$

Thus,

${\theta }_{v}=-\text{50}\text{.}1º\text{.}$

Discussion for (b)

The negative angle means that the velocity is $\text{50}\text{.}1º$ below the horizontal. This result is consistent with the fact that the final vertical velocity is negative and hence downward—as you would expect because the final altitude is 20.0 m lower than the initial altitude. (See [link] .)

One of the most important things illustrated by projectile motion is that vertical and horizontal motions are independent of each other. Galileo was the first person to fully comprehend this characteristic. He used it to predict the range of a projectile. On level ground, we define range    to be the horizontal distance $R$ traveled by a projectile. Galileo and many others were interested in the range of projectiles primarily for military purposes—such as aiming cannons. However, investigating the range of projectiles can shed light on other interesting phenomena, such as the orbits of satellites around the Earth. Let us consider projectile range further.

How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed ${v}_{0}$ , the greater the range, as shown in [link] (a). The initial angle ${\theta }_{0}$ also has a dramatic effect on the range, as illustrated in [link] (b). For a fixed initial speed, such as might be produced by a cannon, the maximum range is obtained with . This is true only for conditions neglecting air resistance. If air resistance is considered, the maximum angle is approximately $\text{38º}$ . Interestingly, for every initial angle except $\text{45º}$ , there are two angles that give the same range—the sum of those angles is $\text{90º}$ . The range also depends on the value of the acceleration of gravity $g$ . The lunar astronaut Alan Shepherd was able to drive a golf ball a great distance on the Moon because gravity is weaker there. The range $R$ of a projectile on level ground for which air resistance is negligible is given by

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!