<< Chapter < Page Chapter >> Page >
Introduction to compressive sensing. This course introduces the basic concepts in compressive sensing. We overview the concepts of sparsity, compressibility, and transform coding. We then review applications of sparsity in several signal processing problems such as sparse recovery, model selection, data coding, and error correction. We overview the key results in these fields, focusing primarily on both theory and algorithms for sparse recovery. We also discuss applications of compressive sensing in communications, biosensing, medical imaging, and sensor networks.

We are in the midst of a digital revolution that is driving the development and deployment of new kinds of sensing systems with ever-increasing fidelity and resolution. The theoretical foundation of this revolution is the pioneering work of Kotelnikov, Nyquist, Shannon, and Whittaker on sampling continuous-time band-limited signals  [link] , [link] , [link] , [link] . Their results demonstrate that signals, images, videos, and other data can be exactly recovered from a set of uniformly spaced samples taken at the so-called Nyquist rate of twice the highest frequency present in the signal of interest. Capitalizing on this discovery, much of signal processing has moved from the analog to the digital domain and ridden the wave of Moore's law. Digitization has enabled the creation of sensing and processing systems that are more robust, flexible, cheaper and, consequently, more widely-used than their analog counterparts.

As a result of this success, the amount of data generated by sensing systems has grown from a trickle to a torrent. Unfortunately, in many important and emerging applications, the resulting Nyquist rate is so high that we end up with far too many samples. Alternatively, it may simply be too costly, or even physically impossible, to build devices capable of acquiring samples at the necessary rate. Thus, despite extraordinary advances in computational power, the acquisition and processing of signals in application areas such as imaging, video, medical imaging, remote surveillance, spectroscopy, and genomic data analysis continues to pose a tremendous challenge.

To address the logistical and computational challenges involved in dealing with such high-dimensional data, we often depend on compression, which aims at finding the most concise representation of a signal that is able to achieve a target level of acceptable distortion. One of the most popular techniques for signal compression is known as transform coding , and typically relies on finding a basis or frame that provides sparse or compressible representations for signals in a class of interest. By a sparse representation, we mean that for a signal of length N , we can represent it with K N nonzero coefficients; by a compressible representation, we mean that the signal is well-approximated by a signal with only K nonzero coefficients. Both sparse and compressible signals can be represented with high fidelity by preserving only the values and locations of the largest coefficients of the signal. This process is called sparse approximation , and forms the foundation of transform coding schemes that exploit signal sparsity and compressibility, including the JPEG, JPEG2000, MPEG, and MP3 standards.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?

Ask