<< Chapter < Page Chapter >> Page >

Ondersoek: veranderlikes en konstantes.

Identifiseer die veranderlikes en die konstantes in die volgende vergelykings:

  1. 2 x 2 = 1
  2. 3 x + 4 y = 7
  3. y = - 5 x
  4. y = 7 x - 2

Relasies en funksies

In die verlede het jy gesien veranderlikes kan relasies (verhoudings) hê met mekaar. Byvoorbeeld, Anton is 2 jaar ouer as Naomi. Die relasie of verband tussen die ouderdomme van Anton en Naomi kan geskryf word as A = N + 2 , waar Anton se ouderdom voorgestel word met A en Naomi se ouderdom voorgestel word met N .

In die algemeen is 'n relasie 'n vergelyking met twee veranderlikes. Byvoorbeeld, y = 5 x en y 2 + x 2 = 5 is relasies. In albei voorbeelde is x en y veranderlikes en 5 is 'n konstante. Vir elke waarde van x sal jy 'n ander, unieke waarde vir y kry.

Mens hoef nie relasies as vergelykings te skryf nie, dit kan ook weergegee word in woorde, tabelle of grafieke. Byvoorbeeld, in plaas van y = 5 x te skryf, kan mens sê “ y is vyf keer so groot as x ”. Ons kan ook die volgende tabel gee:

x y = 5 x
2 10
6 30
8 40
13 65
15 75

Ondersoek: relasies en funksies

Voltooi die volgende tabel vir die gegewe funksies:

x y = x y = 2 x y = x + 2
1
2
3
50
100

Die cartesiese vlak

Wanneer ons met funksies met reële getalle werk, is ons vernaamste stuk gereedskap 'n grafiek. Eerstens, indien ons twee reële veranderlikes het, x en y , kan ons gelyktydig vir hulle waardes toeken. Byvoorbeeld, ons kan sê " x is 5 en y is 3”. Net soos wat ons vir " x is 5” verkort deur te skryf " x = 5 ”, kan ons ook “ x is 5 en y is 3” verkort deur te sê “ ( x ; y ) = ( 5 ; 3 ) ”. Gewoonlik as ons dink aan reële getalle, dink ons aan 'n oneindige lang lyn en 'n getal as 'n punt op die lyn. Indien ons twee getalle op dieselfde tyd kies, kan ons iets soortgelyks doen, maar nou gebruik ons twee dimensies. Ons gebruik nou twee lyne, een vir x en een vir y , met die lyn vir y , geroteer, soos in [link] .Ons noem dit die Cartesiese vlak .

Die Cartesiese vlak bestaan uit 'n x - as (horisontaal) en 'n y - as (vertikaal).

Teken van grafieke

Om 'n grafiek van 'n funksie te teken, moet ons 'n paar punte bereken en stip op die Cartesiese vlak. Die punte word dan in volgorde verbind om 'n gladde lyn te vorm.

Kom ons kyk na die funksie, f ( x ) = 2 x . Ons kan dan al die punte ( x ; y ) beskou wat so is dat y = f ( x ) , in hierdie geval y = 2 x . Byvoorbeeld ( 1 ; 2 ) , ( 2 , 5 ; 5 ) , en ( 3 ; 6 ) stel sulke punte voor en ( 3 ; 5 ) stel nie so 'n punt voor nie, aangesien 5 2 × 3 . Indien ons 'n kol op al die punte sit, asook al die soortgelyke punte vir alle moontlike waardes van x , sal ons die grafiek soos in [link] kry.

Grafiek van f ( x ) = 2 x

Die vorm van die grafiek is baie eenvoudig, dit is bloot ’n reguitlyn deur die middel van die vlak. Hierdie "stippingstegniek" is die sleutel tot die verstaan van funksies.

Ondersoek: teken van grafieke en die cartesiese vlak

Stip die volgende punte en trek 'n gladde lyn deur hulle: (-6; -8), (-2; 0), (2; 8), (6; 16).

Notasie vir funksies

Tot dus ver het ons gesien jy kan y = 2 x gebruik om 'n funksie voor te stel. Hierdie notasie raak verwarrend as jy met meer as een funksie werk. 'n Meer algemene manier om funksies neer te skryf, is deur die notasie f ( x ) , te gebruik, waar f die funksienaam en x die onafhanklike veranderlike is. Byvoorbeeld, f ( x ) = 2 x en g ( t ) = 2 t + 1 is twee verskillende funksies. Met f en g die name en x en t die veranderlikes. As mens van f ( x ) praat, sê mens “f van x”.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?

Ask