<< Chapter < Page Chapter >> Page >
This example shows how a Huffman coder allocates variable length codewords to the transmitted symbols depending on their probability of occurence.

Source coding

Huffman coding deploys variable length coding and then allocates the longer codewords to less frequently occurring symbols and shorter codewords to more regularly occurring symbols. By using this technique it can minimize the overall transmission rate as the regularly occurring symbols are allocated the shorter codewords.

Simple source coding

8-symbol signal to be encoded
Symbol Probability
A 0.10
B 0.18
C 0.40
D 0.05
E 0.06
F 0.10
G 0.07
H 0.04

We have to start with knowledge of the probabilities of occurrence of all the symbols in the alphabet. The table above shows an example of an 8-symbol alphabet, A…H, with the associated probabilities for each of the eight individual symbols.

Source encoder entropy calculation

[link] shows that the entropy of this source data is 2.5524 bits/symbol.

Simple fixed length (3-bit) encoder
Symbol Code
A 000
B 001
C 010
D 011
E 100
F 101
G 110
H 111

This shows the application of very simple coding where, as there are 8 symbols, we adopt a 3-bit code. [link] shows that the entropy of such a source is 2.5524 bit/symbol and, with the fixed 3 bit/symbol length allocated codewords, the efficiency of this simple coder would be only 2.5524/3.0 = 85.08%, which is a rather poor result.

Huffman coding

This is a variable length coding technique which involves two processes, reduction and splitting.

Reduction

We start by listing the symbols in descending order of probability, with the most probable symbol, C, at the top and the least probable symbol, H, at the foot, see left hand side of [link] . Next we reduce the two least probable symbols into a single symbol which has the combined probability of these two symbols summed together. Thus symbols H and D are combined into a single (i.e. reduced) symbol with probability 0.04 + 0.05 = 0.09.

Now the symbols have to be reordered again in descending order of probability. As the probability of the new H+D combined symbol (0.09) is no longer the smallest value it then moves up the reordered list as shown in the second left column in [link] .

This process is progressively repeated as shown in [link] until all symbols are combined into a single symbol whose probability must equal 1.00.

Huffman coder reduction process

Splitting

The variable length codewords for each transmitted symbol are now derived by working backwards (from the right) through the tree structure created in [link] , by assigning a 0 to the upper branch of each combining operation and a 1 to the lower branch.

The final “combined symbol” of probability 1.00 is thus split into two parts of probability 0.60 with assigned digit of 0 and another part with probability 0.40 with assigned digit of 1. This latter part with probability 0.40 and assigned digit of 1 actually represents symbol C, [link] .

The “combined symbol” with probability 0.60 (and allocated first digit of 0) is now split into two further parts with probability 0.37 with an additional or second assigned digit of 0 (i.e. its code is now 00) and another part with the remaining probability 0.23 where the additional assigned digit is 1 and associated code will now be 01.

Huffman coder splitting process to generate the variable length codewords and allocate these depending on symbol probabilities.

This process is repeated by adding each new digit after the splitting operation to the right of the previous one. Note how this allocates short codes to the more probable symbols and longer codes to the less probable symbols, which are transmitted less often.

Huffmann coded variable length symbols
Symbol Code
A 011
B 001
C 1
D 00010
E 0101
F 0000
G 0100
H 00011

Code efficiency

[link] summarises the codewords now allocated to each of the transmitted symbols A…H and also calculates the average length of this source coder as 2.61 bits/symbol. Note the considerable reduction from the fixed length of 3 in the simple 3-bit coder in earlier table.

Summary of allocated codewords for each symbol, A ...H, and calculation of average length of transmitted codeword.

Now recall from [link] that the entropy of the source data was 2.5524 bits/symbol and the simple fixed length 3-bit code in the earlier table, with a length of 3.00 which gave an efficiency of only 85.08%.

The efficiency of the Huffman coded data with its variable length codewords is therefore 2.5524/2.62 = 97.7% which is a much more acceptable result.

If the symbol probabilities all have values 1/( 2 n ) which are integer powers of 2 then Huffmann coding will result in 100% efficiency.

This module has been created from lecture notes originated by P M Grant and D G M Cruickshank which are published in I A Glover and P M Grant, "Digital Communications", Pearson Education, 2009, ISBN 978-0-273-71830-7. Powerpoint slides plus end of chapter problem examples/solutions are available for instructor use via password access at http://www.see.ed.ac.uk/~pmg/DIGICOMMS/

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Communications source and channel coding with examples. OpenStax CNX. May 07, 2009 Download for free at http://cnx.org/content/col10601/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Communications source and channel coding with examples' conversation and receive update notifications?

Ask