<< Chapter < Page Chapter >> Page >

§5.2 Synchronous-Machine Inductances; Equivalent Circuits

Figure 5.3 Schematic diagram of a two-pole,

three-phase cylindrical-rotor synchronous machine.

  • A cross-sectional sketch of a three-phase cylindrical-rotor synchronous machine is shown schematically in Fig.5.3. The figure shows a two-pole machine; alternatively, this can be considered as two poles of a multipole machine. The three-phase armature winding on the stator is of the same type used in the discussion of rotating magnetic fields in Section 4.5. Coils a a ' size 12{a { {a}} sup { ' }} {} , b b ' size 12{b { {b}} sup { ' }} {} and c c ' size 12{c { {c}} sup { ' }} {} I represent distributed windings producing sinusoidal mmf and flux-density waves in the air gap. The reference directions for the currents are shown by dots and crosses. The field winding f f ' size 12{f { {f}} sup { ' }} {} on the rotor also represents a distributed winding which produces a sinusoidal mmf and flux-density wave centered on its magnetic axis and rotating with the rotor.
  • When the flux linkages with armature phases a, b, c and field winding f are expressed in terms of the inductances and currents as follows,

λ a = L aa i a + L ab i b + L ac i c + L af i f size 12{λ rSub { size 8{a} } =L rSub { size 8{ ital "aa"} } i rSub { size 8{a} } +L rSub { size 8{ ital "ab"} } i rSub { size 8{b} } +L rSub { size 8{ ital "ac"} } i rSub { size 8{c} } +L rSub { size 8{ ital "af"} } i rSub { size 8{f} } } {} (5.8)

λ b = L ba i a + L bb i b + L bc i c + L bf i f size 12{λ rSub { size 8{b} } =L rSub { size 8{ ital "ba"} } i rSub { size 8{a} } +L rSub { size 8{ ital "bb"} } i rSub { size 8{b} } +L rSub { size 8{ ital "bc"} } i rSub { size 8{c} } +L rSub { size 8{ ital "bf"} } i rSub { size 8{f} } } {} (5.9)

λ c = L ca i a + L cb i b + L cc i c + L cf i f size 12{λ rSub { size 8{c} } =L rSub { size 8{ ital "ca"} } i rSub { size 8{a} } +L rSub { size 8{ ital "cb"} } i rSub { size 8{b} } +L rSub { size 8{ ital "cc"} } i rSub { size 8{c} } +L rSub { size 8{ ital "cf"} } i rSub { size 8{f} } } {} (5.10)

λ f = L fa i a + L fb i b + L fc i c + L ff i f size 12{λ rSub { size 8{f} } =L rSub { size 8{ ital "fa"} } i rSub { size 8{a} } +L rSub { size 8{ ital "fb"} } i rSub { size 8{b} } +L rSub { size 8{ ital "fc"} } i rSub { size 8{c} } +L rSub { size 8{ ital "ff"} } i rSub { size 8{f} } } {} (5.11)

the induced voltages can be found from Faraday's law. Here, two like subscripts denote a self-inductance, and two unlike subscripts denote a mutual inductance between the two windings. The script is used to indicate that, in general, both the self- and mutual inductances of a three-phase machine may vary with rotor angle.

§5.2.1 Rotor Self-Inductance

  • With a cylindrical stator, the self-inductance of the field winding is independent of the rotor position 0m when the harmonic effects of stator slot openings are neglected.

L ff = L ff = L ff 0 + L f1 size 12{L rSub { size 8{ ital "ff"} } =L rSub { size 8{ ital "ff"} } =L rSub { size 8{ ital "ff"0} } +L rSub { size 8{f1} } } {} (5.12)

where the italic L is used for an inductance which is independent of θ m size 12{θ rSub { size 8{m} } } {} . The component L ff 0 size 12{L rSub { size 8{ ital "ff"0} } } {} corresponds to that portion of L ff size 12{L rSub { size 8{ ital "ff"} } } {} due to the space-fundamental component of air-gap flux

§5.2.2 Stator-to-Rotor Mutual Inductances

  • The stator-to-rotor mutual inductances vary periodically with θ me size 12{θ rSub { size 8{ ital "me"} } } {} , the electrical angle between the magnetic axes of the field winding and the armature phase a as shown in Fig.5.2 and as defined by Eq.4.54. With the space-mmf and air-gap flux distribution assumed sinusoidal, the mutual inductance between the field winding f and phase a varies as cos θ me size 12{"cos"θ rSub { size 8{ ital "me"} } } {} ; thus

L af = L fa = L af cos θ me size 12{L rSub { size 8{ ital "af"} } =L rSub { size 8{ ital "fa"} } =L rSub { size 8{ ital "af"} } "cos"θ rSub { size 8{ ital "me"} } } {} (5.13)

θ me = poles 2 θ m = ω e t + δ e0 size 12{θ rSub { size 8{ ital "me"} } = left [ { { ital "poles"} over {2} } right ]θ rSub { size 8{m} } =ω rSub { size 8{e} } t+δ rSub { size 8{e0} } } {} (5.14)

L af = L fa = L af cos ( ω e t + δ e0 ) size 12{L rSub { size 8{ ital "af"} } =L rSub { size 8{ ital "fa"} } =L rSub { size 8{ ital "af"} } "cos" \( ω rSub { size 8{e} } t+δ rSub { size 8{e0} } \) } {} (5.15)

§5.2.3 Stator Inductances; Synchronous Inductance

  • With a cylindrical rotor, the air-gap geometry is independent of θ m size 12{θ rSub { size 8{m} } } {} if the effects of rotor slots are neglected. The stator self-inductances then are constant; thus

L aa = L bb = L cc = L aa = L aa 0 + L a1 size 12{L rSub { size 8{ ital "aa"} } =L rSub { size 8{ ital "bb"} } =L rSub { size 8{ ital "cc"} } =L rSub { size 8{ ital "aa"} } =L rSub { size 8{ ital "aa"0} } +L rSub { size 8{a1} } } {} (5.16)

§5.2.4 Equivalent Circuit

  • Equivalent circuit for the synchronous machine:
  • Single-phase, line-to-neutral equivalent circuits for a three-phase machine operating under balanced, three-phase conditions.

L s = size 12{L rSub { size 8{s} } ={}} {} effective inductance seen by phase a under steady-state, balanced three-phase

machine operating conditions.

X s = ω e L s size 12{X rSub { size 8{s} } =ω rSub { size 8{e} } L rSub { size 8{s} } } {} : synchronous reactance

R a = size 12{R rSub { size 8{a} } ={}} {} armature winding resistance

e af = size 12{e rSub { size 8{ ital "af"} } ={}} {} voltage induced by the field winding flux (generated voltage, internal voltage)

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Electrical machines. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10767/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Electrical machines' conversation and receive update notifications?

Ask