<< Chapter < Page Chapter >> Page >

Z sc = R 1 + jX 1 1 + Z ϕ ( R 2 + jX 1 2 ) Z ϕ + R 2 + jX 1 2 size 12{Z rSub { size 8{ ital "sc"} } =R rSub { size 8{1} } + ital "jX" rSub { size 8{1 rSub { size 6{1} } } } + { {Z rSub {ϕ} size 12{ \( R rSub {2} } size 12{+ ital "jX" rSub {1 rSub { size 6{2} } } } size 12{ \) }} over {Z rSub {ϕ} size 12{+R rSub {2} } size 12{+ ital "jX" rSub {1 rSub { size 6{2} } } }} } } {} (2.27)

Z sc R 1 + jX 1 1 + R 2 + jX 1 2 = R eq + jX eq size 12{Z rSub { size 8{ ital "sc"} } approx R rSub { size 8{1} } + ital "jX" rSub { size 8{1 rSub { size 6{1} } } } +R rSub {2} size 12{+ ital "jX" rSub {1 rSub { size 6{2} } } } size 12{ {}=R rSub { ital "eq"} } size 12{+ ital "jX" rSub { ital "eq"} }} {} (2.28)

Typically the instrumentation will measure the rms magnitude of the applied voltage V sc size 12{V rSub { size 8{ ital "sc"} } } {} , the short-circuit current I sc size 12{I rSub { size 8{ ital "sc"} } } {} , and the power P sc size 12{P rSub { size 8{ ital "sc"} } } {} . The circuit parameters (referred to the primary) can be found as (2.29)-(2.31).

Z eq = Z sc = V sc I sc size 12{ \lline Z rSub { size 8{ ital "eq"} } \lline = \lline Z rSub { size 8{ ital "sc"} } \lline = { {V rSub { size 8{ ital "sc"} } } over {I rSub { size 8{ ital "sc"} } } } } {} (2.29)

R eq = R sc = P sc I sc 2 size 12{R rSub { size 8{ ital "eq"} } =R rSub { size 8{ ital "sc"} } = { {P rSub { size 8{ ital "sc"} } } over {I rSub { size 8{ ital "sc"} } rSup { size 8{2} } } } } {} (2.30)

X eq = X sc = Z sc 2 R sc 2 size 12{X rSub { size 8{ ital "eq"} } =X rSub { size 8{ ital "sc"} } = sqrt { \lline Z rSub { size 8{ ital "sc"} } \lline rSup { size 8{2} } - R rSub { size 8{ ital "sc"} } rSup { size 8{2} } } } {} (2.31)

  • The equivalent impedance can be referred from one side to the other.
  • Approximate values of the individual primary and secondary resistances and leakage reactances can be obtained by assuming that R 1 = R 2 = 0 . 5R eq size 12{R rSub { size 8{1} } =R rSub { size 8{2} } =0 "." 5R rSub { size 8{ ital "eq"} } } {} and X l 1 = X l 2 = 0 . 5X eq size 12{X rSub { size 8{l rSub { size 6{1} } } } =X rSub {l rSub { size 6{2} } } size 12{ {}=0 "." 5X rSub { ital "eq"} }} {} when all impedances are referred to the same side.
  • Note that it is possible to measure R 1 size 12{R rSub { size 8{1} } } {} and R 2 size 12{R rSub { size 8{2} } } {} directly by a dc resistance measurement on each winding. However, no such simple test exists for X l 1 size 12{X rSub { size 8{l rSub { size 6{1} } } } } {} and X l 2 size 12{X rSub { size 8{l rSub { size 6{2} } } } } {} .
  • Open-Circuit Test
  • The test is used to find the equivalent shunt impedance R c // jX m size 12{R rSub { size 8{c} } "//" ital "jX" rSub { size 8{m} } } {} .
  • The test is performed with the secondary open-circuited and rated voltage impressed on the primary. If the transformer is to be used at other than its rated voltage, the test should be done at that voltage.
  • An exciting current of a few percent of full-load current is obtained.
  • See Fig. 2.16. Note that Z ϕ = R c // jX m size 12{Z rSub { size 8{ϕ} } =R rSub { size 8{c} } "//" ital "jX" rSub { size 8{m} } } {} .

Figure 2.13 Equivalent circuit with open-circuited secondary. (a) Complete equivalent circuit.(b) Cantilever equivalent circuit with the exciting branch at the transformer primary.

Z oc = R 1 + jX 1 1 + Z ϕ = R 1 + jX 1 1 + R c ( jX m ) R c + jX m size 12{Z rSub { size 8{ ital "oc"} } =R rSub { size 8{1} } + ital "jX" rSub { size 8{1 rSub { size 6{1} } } } +Z rSub {ϕ} size 12{ {}=R rSub {1} } size 12{+ ital "jX" rSub {1 rSub { size 6{1} } } } size 12{+ { {R rSub {c} size 12{ \( ital "jX" rSub {m} } size 12{ \) }} over {R rSub {c} size 12{+ ital "jX" rSub {m} }} } }} {} (2.32)

Z oc Z ϕ = R c ( jX m ) R c + jX m size 12{Z rSub { size 8{ ital "oc"} } approx Z rSub { size 8{ϕ} } = { {R rSub { size 8{c} } \( ital "jX" rSub { size 8{m} } \) } over {R rSub { size 8{c} } + ital "jX" rSub { size 8{m} } } } } {} (2.33)

  • Typically the instrumentation will measure the rms magnitude of the applied voltage V oc size 12{V rSub { size 8{ ital "oc"} } } {} , the open-circuit current I oc size 12{I rSub { size 8{ ital "oc"} } } {} , and the power P oc size 12{P rSub { size 8{ ital "oc"} } } {} . The circuit parameters (referred to the primary) can be found as (2.34)-(2.36).

R c = V oc 2 P oc size 12{R rSub { size 8{c} } = { {V rSub { size 8{ ital "oc"} } rSup { size 8{2} } } over {P rSub { size 8{ ital "oc"} } } } } {} (2.34)

Z ϕ = V oc P oc size 12{ \lline Z rSub { size 8{ϕ} } \lline = { {V rSub { size 8{ ital "oc"} } } over {P rSub { size 8{ ital "oc"} } } } } {} (2.35)

X m = 1 ( 1 / Z ϕ ) 2 ( 1 / R c ) 2 size 12{X rSub { size 8{m} } = { {1} over { sqrt { \( 1/ \lline Z rSub { size 8{ϕ} } \lline \) rSup { size 8{2} } - \( 1/R rSub { size 8{c} } \) rSup { size 8{2} } } } } } {} (2.36)

  • The open-circuit test can be used to obtain the core loss for efficiency computations and to check the magnitude of the exciting current.
  • Note the term “Voltage Regulation” which is to be discussed in Example 2.6.

§2.6 Autotransformers; Multiwinding Transformers

  • Two-winding  Other winding configurations.

§2.6.1 Autotransformers

  • Autotransformer connection: Fig. 2.14.

Figure 2.14 (a) Two-winding transformer. (b) Connection as an autotransformer.

  • The windings of the two-winding transformer are electrically isolated whereas those of the autotransformer are connected directly together.
  • In the transformer connection, winding ab must be provided with extra insulation.
  • Autotransformer have lower leakage reactances, lower losses, and smaller exciting current and cost less than two-winding transformers when the voltage ration does not differ too greatly from 1:1.
  • The rated voltages of the transformer can be expressed in terms of those of the two-winding transformer as

V L rated = V 1 rated size 12{V rSub { size 8{L rSub { size 6{ ital "rated"} } } } =V rSub {1 rSub { size 6{ ital "rated"} } } } {} (2.37)

V H rated = V 1 rated + V 2 rated = N 1 + N 2 N 1 V L rated size 12{V rSub { size 8{H rSub { size 6{ ital "rated"} } } } =V rSub {1 rSub { size 6{ ital "rated"} } } size 12{+V rSub {2 rSub { size 6{ ital "rated"} } } } size 12{ {}= left ( { {N rSub {1} size 12{+N rSub {2} }} over { size 12{N rSub {1} } } } right )} size 12{V rSub {L rSub { size 6{ ital "rated"} } } }} {} (2.38)

  • The effective turns ratio of the autotransformer is thus ( N 1 + N 2 ) / N 1 size 12{ \( N rSub { size 8{1} } +N rSub { size 8{2} } \) /N rSub { size 8{1} } } {} .
  • The power rating of the autotransformer is equal to ( N 1 + N 2 ) / N 2 size 12{ \( N rSub { size 8{1} } +N rSub { size 8{2} } \) /N rSub { size 8{2} } } {} times that of the two winding transformer.

§2.6.2 Multiwinding Transformers

  • Transformers having three or more windings, known as multiwinding or multicircuit transformers, are often used to interconnect three or more circuits which may have different voltages.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Electrical machines. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10767/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Electrical machines' conversation and receive update notifications?

Ask