<< Chapter < Page Chapter >> Page >

cdbn.m Plots a continuous graph of a distribution function of a simple random variable (or simple approximation).

% CDBN file cdbn.m Continuous graph of distribution function % Version of 1/29/97% Plots continuous graph of dbn function FX from % distribution of simple rv (or simple approximation)xc = input('Enter row matrix of VALUES '); pc = input('Enter row matrix of PROBABILITIES ');m = length(xc); FX = cumsum(pc);xt = [xc(1)-0.01 xc xc(m)+0.01];FX = [0 FX FX(m)]; % Artificial extension of range and domainplot(xt,FX) % Plot of continuous graph gridxlabel('t') ylabel('u = F(t)')title('Distribution Function')
Got questions? Get instant answers now!

simple.m Calculates basic quantites for simple random variables from the distribution, input as row matrices X and P X .

% SIMPLE file simple.m Calculates basic quantites for simple rv % Version of 6/18/95X = input('Enter row matrix of X-values '); PX = input('Enter row matrix PX of X probabilities ');n = length(X); % dimension of X EX = dot(X,PX) % E[X]EX2 = dot(X.^2,PX) % E[X^2] VX = EX2 - EX^2 % Var[X]disp(' ') disp('Use row matrices X and PX for further calculations')
Got questions? Get instant answers now!

jddbn.m Representation of joint distribution function for simple pair by obtaining the value of F X Y at the lower left hand corners of each grid cell.

% JDDBN file jddbn.m Joint distribution function % Version of 10/7/96% Joint discrete distribution function for % joint matrix P (arranged as on the plane).% Values at lower left hand corners of grid cells P = input('Enter joint probability matrix (as on the plane) ');FXY = flipud(cumsum(flipud(P))); FXY = cumsum(FXY')';disp('To view corner values for joint dbn function, call for FXY')
Got questions? Get instant answers now!

jsimple.m Calculates basic quantities for a joint simple pair { X , Y } from the joint distrsibution X , Y , P as in jcalc. Calculated quantities include means, variances, covariance, regression line, and regression curve (conditional expectation E [ Y | X = t ] ).

% JSIMPLE file jsimple.m Calculates basic quantities for joint simple rv % Version of 5/25/95% The joint probabilities are arranged as on the plane % (the top row corresponds to the largest value of Y)P = input('Enter JOINT PROBABILITIES (as on the plane) '); X = input('Enter row matrix of VALUES of X ');Y = input('Enter row matrix of VALUES of Y '); disp(' ')PX = sum(P); % marginal distribution for X PY = fliplr(sum(P')); % marginal distribution for YXDBN = [X; PX]';YDBN = [Y; PY]';PT = idbn(PX,PY); D = total(abs(P - PT)); % test for differenceif D>1e-8 % to prevent roundoff error masking zero disp('{X,Y} is NOT independent')else disp('{X,Y} is independent')end disp(' ')[t,u] = meshgrid(X,fliplr(Y));EX = total(t.*P) % E[X] EY = total(u.*P) % E[Y]EX2 = total((t.^2).*P) % E[X^2] EY2 = total((u.^2).*P) % E[Y^2]EXY = total(t.*u.*P) % E[XY] VX = EX2 - EX^2 % Var[X]VY = EY2 - EY^2 % Var[Y] cv = EXY - EX*EY; % Cov[X,Y]= E[XY] - E[X]E[Y] if abs(cv)>1e-9 % to prevent roundoff error masking zero CV = cvelse CV = 0end a = CV/VX % regression line of Y on X isb = EY - a*EX % u = at + b R = CV/sqrt(VX*VY); % correlation coefficient rhodisp(['The regression line of Y on X is: u = ',num2str(a),'t + ',num2str(b),])disp(['The correlation coefficient is: rho = ',num2str(R),])disp(' ') eYx = sum(u.*P)./PX;EYX = [X;eYx]';disp('Marginal dbns are in X, PX, Y, PY; to view, call XDBN, YDBN') disp('E[Y|X = x]is in eYx; to view, call for EYX') disp('Use array operations on matrices X, Y, PX, PY, t, u, and P')
Got questions? Get instant answers now!

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
A fair die is tossed 180 times. Find the probability P that the face 6 will appear between 29 and 32 times inclusive
Samson Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?