# 9.8 Induced voltage and magnetic flux

 Page 1 / 3
• Describe methods to produce an electromotive force (emf) with a magnetic field or magnet and a loop of wire.

The apparatus used by Faraday to demonstrate that magnetic fields can create currents is illustrated in [link] . When the switch is closed, a magnetic field is produced in the coil on the top part of the iron ring and transmitted to the coil on the bottom part of the ring. The galvanometer is used to detect any current induced in the coil on the bottom. It was found that each time the switch is closed, the galvanometer detects a current in one direction in the coil on the bottom. Each time the switch is opened, the galvanometer detects a current in the opposite direction. Interestingly, if the switch remains closed or open for any length of time, there is no current through the galvanometer. Closing and opening the switch induces the current. It is the change in magnetic field that creates the current. More basic than the current that flows is the voltage that causes it. The current is a result of an voltage induced by a changing magnetic field , whether or not there is a path for current to flow.

An experiment easily performed and often done in physics labs is illustrated in [link] . A voltage is induced in the coil when a bar magnet is pushed in and out of it. Voltages of opposite signs are produced by motion in opposite directions, and the voltages are also reversed by reversing poles. The same results are produced if the coil is moved rather than the magnet—it is the relative motion that is important. The faster the motion, the greater the voltage, and there is no voltage when the magnet is stationary relative to the coil.

The method of inducing a voltage used in most electric generators is shown in [link] . A coil is rotated in a magnetic field, producing an alternating voltage (and current), which depends on rotation rate and other factors that will be explored in later sections. Note that the generator is remarkably similar in construction to a motor.

So we see that changing the magnitude or direction of a magnetic field produces a voltage. Experiments revealed that there is a crucial quantity called the magnetic flux    , $\Phi$ , given by

$\mathit{\Phi }={B}_{\perp }A,$

where $B$ is the magnetic field strength over an area $A$ , at an angle $\theta$ with the perpendicular to the area as shown in [link] . Any change in magnetic flux $\Phi$ induces a voltage. This process is defined to be electromagnetic induction    . Units of magnetic flux $\Phi$ are $\text{T}\cdot {\text{m}}^{2}$ .

All induction, including the examples given so far, arises from some change in magnetic flux $\Phi$ . For example, Faraday changed $B$ and hence $\Phi$ when opening and closing the switch in his apparatus (shown in [link] ). This is also true for the bar magnet and coil shown in [link] . When rotating the coil of a generator, the angle $\theta$ and, hence, $\Phi$ is changed. Just how great a voltage and what direction it takes depend on the change in $\Phi$ and how rapidly the change is made, as examined in the next section.

## Section summary

• The crucial quantity in induction is magnetic flux $\mathit{\Phi }$ , defined to be $\mathit{\Phi }={B}_{\perp }A$ , where ${B}_{\perp }$ is the magnetic field strength perpendicular to the area $A$ .
• Units of magnetic flux $\Phi$ are $\text{T}\cdot {\text{m}}^{2}$ .
• Any change in magnetic flux $\Phi$ induces a voltage—the process is defined to be electromagnetic induction.

## Conceptual questions

How do the multiple-loop coils and iron ring in the version of Faraday’s apparatus shown in [link] enhance the observation of induced voltage?

When a magnet is thrust into a coil as in [link] (a), what is the direction of the force exerted by the coil on the magnet? Draw a diagram showing the direction of the current induced in the coil and the magnetic field it produces, to justify your response. How does the magnitude of the force depend on the resistance of the galvanometer?

Explain how magnetic flux can be zero when the magnetic field is not zero.

Is a voltage induced in the coil in [link] when it is stretched? If so, state why and give the direction of the induced current.

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!