<< Chapter < Page Chapter >> Page >
  • Observe collisions of extended bodies in two dimensions.
  • Examine collision at the point of percussion.

Bowling pins are sent flying and spinning when hit by a bowling ball—angular momentum as well as linear momentum and energy have been imparted to the pins. (See [link] ). Many collisions involve angular momentum. Cars, for example, may spin and collide on ice or a wet surface. Baseball pitchers throw curves by putting spin on the baseball. A tennis player can put a lot of top spin on the tennis ball which causes it to dive down onto the court once it crosses the net. We now take a brief look at what happens when objects that can rotate collide.

Consider the relatively simple collision shown in [link] , in which a disk strikes and adheres to an initially motionless stick nailed at one end to a frictionless surface. After the collision, the two rotate about the nail. There is an unbalanced external force on the system at the nail. This force exerts no torque because its lever arm r size 12{r} {} is zero. Angular momentum is therefore conserved in the collision. Kinetic energy is not conserved, because the collision is inelastic. It is possible that momentum is not conserved either because the force at the nail may have a component in the direction of the disk’s initial velocity. Let us examine a case of rotation in a collision in [link] .

A bowling ball, just as it is striking the pins.
The bowling ball causes the pins to fly, some of them spinning violently. (credit: Tinou Bao, Flickr)
Figure a shows a disc m sliding toward a motionless stick M of length r pivoted about a nail, on a frictionless surface. In figure b, a disk hits the stick at one end and adheres to it, and the stick rotates, pivoting around the nail in a direction shown by the arrow in the clockwise direction and angular velocity omega.
(a) A disk slides toward a motionless stick on a frictionless surface. (b) The disk hits the stick at one end and adheres to it, and they rotate together, pivoting around the nail. Angular momentum is conserved for this inelastic collision because the surface is frictionless and the unbalanced external force at the nail exerts no torque.

Rotation in a collision

Suppose the disk in [link] has a mass of 50.0 g and an initial velocity of 30.0 m/s when it strikes the stick that is 1.20 m long and 2.00 kg.

(a) What is the angular velocity of the two after the collision?

(b) What is the kinetic energy before and after the collision?

(c) What is the total linear momentum before and after the collision?

Strategy for (a)

We can answer the first question using conservation of angular momentum as noted. Because angular momentum is size 12{Iω} {} , we can solve for angular velocity.

Solution for (a)

Conservation of angular momentum states

L = L , size 12{L=L'} {}

where primed quantities stand for conditions after the collision and both momenta are calculated relative to the pivot point. The initial angular momentum of the system of stick-disk is that of the disk just before it strikes the stick. That is,

L = , size 12{L=Iω} {}

where I size 12{I} {} is the moment of inertia of the disk and ω size 12{ω} {} is its angular velocity around the pivot point. Now, I = mr 2 size 12{I= ital "mr" rSup { size 8{2} } } {} (taking the disk to be approximately a point mass) and ω = v / r size 12{ω=v/r} {} , so that

L = mr 2 v r = mvr . size 12{L= ital "mr" rSup { size 8{2} } { {v} over {r} } = ital "mvr"} {}

After the collision,

L = I ω . size 12{L'=I'ω'} {}

It is ω size 12{ω rSup { size 8{'} } } {} that we wish to find. Conservation of angular momentum gives

I ω = mvr . size 12{I'ω'= ital "mvr"} {}

Rearranging the equation yields

ω = mvr I , size 12{ω'= { { ital "mvr"} over {I'} } } {}

where I size 12{I'} {} is the moment of inertia of the stick and disk stuck together, which is the sum of their individual moments of inertia about the nail. [link] gives the formula for a rod rotating around one end to be I = Mr 2 / 3 size 12{I= ital "Mr" rSup { size 8{2} } /3} {} . Thus,

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mechanics. OpenStax CNX. Apr 15, 2013 Download for free at http://legacy.cnx.org/content/col11506/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mechanics' conversation and receive update notifications?

Ask