<< Chapter < Page Chapter >> Page >

Speed, average velocity and instantaneous velocity


Velocity is the rate of change of displacement.

Instantaneous velocity

Instantaneous velocity is the velocity of a body at a specific instant in time.

Average velocity

Average velocity is the total displacement of a body over a time interval.

Velocity is the rate of change of position. It tells us how much an object's position changes in time. This is the same as the displacement divided by the time taken. Since displacement is a vector and time taken is a scalar, velocity is also a vector. We use the symbol v for velocity. If we have a displacement of Δ x and a time taken of Δ t , v is then defined as:

velocity ( in m · s - 1 ) = change in displacement ( in m ) change in time ( in s ) v = Δ x Δ t

Velocity can be positive or negative. Positive values of velocity mean that the object is moving away from the reference point or origin and negative values mean that the object is moving towards the reference point or origin.

An instant in time is different from the time taken or the time interval. It is therefore useful to use the symbol t for an instant in time (for example during the 4 th second) and the symbol Δ t for the time taken (for example during the first 5 seconds of the motion).

Average velocity (symbol v ) is the displacement for the whole motion divided by the time taken for the whole motion. Instantaneous velocity is the velocity at a specific instant in time.

(Average) Speed (symbol s ) is the distance travelled ( d ) divided by the time taken ( Δ t ) for the journey. Distance and time are scalars and therefore speed will also be a scalar. Speed is calculated as follows:

speed ( in m · s - 1 ) = distance ( in m ) time ( in s )
s = d Δ t

Instantaneous speed is the magnitude of instantaneous velocity. It has the same value, but no direction.

James walks 2 km away from home in 30 minutes. He then turns around and walks back home along the same path, also in 30 minutes. Calculate James' average speed and average velocity.

  1. The question explicitly gives

    • the distance and time out (2 km in 30 minutes)
    • the distance and time back (2 km in 30 minutes)
  2. The information is not in SI units and must therefore be converted.

    To convert km to m, we know that:

    1 km = 1 000 m 2 km = 2 000 m ( multiply both sides by 2 , because we want to convert 2 km to m . )

    Similarly, to convert 30 minutes to seconds,

    1 min = 60 s 30 min = 1 800 s ( multiply both sides by 30 )
  3. James started at home and returned home, so his displacement is 0 m.

    Δ x = 0 m

    James walked a total distance of 4 000 m (2 000 m out and 2 000 m back).

    d = 4 000 m
  4. James took 1 800 s to walk out and 1 800 s to walk back.

    Δ t = 3 600 s
  5. s = d Δ t = 4 000 m 3 600 s = 1 , 11 m · s - 1
  6. v = Δ x Δ t = 0 m 3 600 s = 0 m · s - 1
Got questions? Get instant answers now!

A man runs around a circular track of radius 100 m . It takes him 120 s to complete a revolution of the track. If he runs at constant speed, calculate:

  1. his speed,
  2. his instantaneous velocity at point A,
  3. his instantaneous velocity at point B,
  4. his average velocity between points A and B,
  5. his average speed during a revolution.
  6. his average velocity during a revolution.

  1. To determine the man's speed we need to know the distance he travels and how long it takes. We know it takes 120 s to complete one revolution ofthe track.(A revolution is to go around the track once.)

  2. What distance is one revolution of the track? We know the track is a circle and we know its radius, so we can determinethe distance around the circle. We start with the equation for the circumference of a circle

    C = 2 π r = 2 π ( 100 m ) = 628 , 32 m

    Therefore, the distance the man covers in one revolution is 628,32 m .

  3. We know that speed is distance covered per unit time. So if we divide the distance covered by the time it took we will know how much distance was covered for every unit of time. No direction is used here because speed is a scalar.

    s = d Δ t = 628 , 32 m 120 s = 5 , 24 m · s - 1

  4. Consider the point A in the diagram. We know which way the man is running around the track and we know hisspeed. His velocity at point A will be his speed (the magnitude of the velocity) plus his direction of motion (the direction of hisvelocity). The instant that he arrives at A he is moving as indicated in thediagram. His velocity will be 5,24 m · s - 1 West.

  5. Consider the point B in the diagram. We know which way the man is running around the track and we know hisspeed. His velocity at point B will be his speed (the magnitude of the velocity) plus his direction of motion (the direction of hisvelocity). The instant that he arrives at B he is moving as indicated in the diagram.His velocity will be 5,24 m · s - 1 South.

  6. To determine the average velocity between A and B, we need the change in displacement between A and B and the change in time between A and B. Thedisplacement from A and B can be calculated by using the Theorem of Pythagoras:

    ( Δ x ) 2 = ( 100 m ) 2 + ( 100 m ) 2 = 20000 m Δ x = 141 , 42135 . . . m
    The time for a full revolution is 120 s, therefore the time for a 1 4 of a revolution is 30 s.
    v A B = Δ x Δ t = 141 , 42 . . . m 30 s = 4 . 71 m · s - 1
    Velocity is a vector and needs a direction.

    Triangle AOB is isosceles and therefore angle BAO = 45 .

    The direction is between west and south and is therefore southwest.

    The final answer is: v = 4.71 m · s - 1 , southwest.

  7. Because he runs at a constant rate, we know that his speed anywhere around the track will be the same. His average speed is 5,24 m · s - 1 .

  8. Remember - displacement can be zero even when distance travelled is not!

    To calculate average velocity we need his total displacement and his total time. His displacement is zero because he ends up where he started. Histime is 120 s . Using these we can calculate his average velocity:

    v = Δ x Δ t = 0 m 120 s = 0 m · s - 1
Got questions? Get instant answers now!

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Siyavula textbooks: grade 10 physical science. OpenStax CNX. Aug 29, 2011 Download for free at http://cnx.org/content/col11245/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science' conversation and receive update notifications?