<< Chapter < Page Chapter >> Page >
A list of future ideas for the musical recognition project.

A number of changes and additions to this project would help it to scale better and be more statistically accurate. Such changes should help the project to handle more complex signals and operate over a larger number of musical instruments.

Improving the gaussian mixture model

To improve the statistical accuracy, the Gaussian Mixture Model used in this project must improve. The features of this model help determine its accuracy, and choosing appropriate additional features is a step towards improving the project. These features may include modeling additional temporal, spectral, harmonic and perceptual properties of the signals, and will help to better distinguish between musical instruments. Temporal features were left out of this project, as they are difficult to analyze in polyphonic signals. However, these features are useful in distinguishing between musical instruments. Articulation, in particular, is useful in distinguishing a trumpet sound, and articulation is by its very nature a temporal feature.

Additionally, more analysis of what features are included in the Gaussian Mixture Model is necessary to improve the statistical accuracy. Too many features, or features that do not adequately distinguish between the instruments, can actually diminish the quality of the output. Such features could respond to the environment noise in a given signal, or to differences between players on the same instrument, more easily than they distinguish between instruments themselves, and this is not desirable. Ideally, this project would involve retesting the sample data with various combinations of feature sets to find the optimal Gaussian Mixture Model.

Improving training data

As training data for this experiment, we used chromatic scales for each instrument over its entire effective range, taken in a single recording session in a relatively low noise environment. To improve this project, the GMM should be trained with multiple players on each instrument, and should include a variety of music - not just the chromatic scale. It should also inlude training data from a number of musical environments with varying levels of noise, as the test data that later is passed through the GMM can hardly be expected to be recorded under the same conditions as the training recordings.

Additionally, the training of the GMM would be improved if it could be initially trained on some polyphonic signals, in addition to the monophonic signals that it is currently trained with. Polyphonic training data was left out of this project due to the complexity of implementation, but it could improve the statistical accuracy of the GMM when decomposing polyphonic test signals.

Increasing the scope

In addition to training the GMM for other players on the three instruments used in this project, to truly decode an arbitrary musical signal, additional instruments must be added. This includes other woodwinds and brass, from flutes and double reeds to french horns and tubas, to strings and percussion. The GMM would likely need to extensively train on similar instruments to properly distinguish between them, and it is unlikely that it would ever be able to distinguish between the sounds of extremely similar instruments, such as a trumpet and a cornet, or a baritone and a euphonium. Such instruments are so similar that few humans can even discern the subtle differences between them, and the sounds produced by these instruments vary more from player to player than between, say, a trumpet and a cornet.

Further, the project would need to include other families of instruments not yet taken into consideration, such as strings and percussion. Strings and tuned percussion, such as xylophones, produce very different tones than wind instruments, and would likely be easy to decompose. Untuned percussion, however, such as cymbals or a cowbell, would be very difficult to add to this project without modifying it, adding features specifically to detect such instruments. Detecting these instruments would require adding temporal features to the GMM, and would likely entail adding an entire beat detection system to the project.

Improving pitch detection

For the most part, and especially in the classical genre, music is written to sound pleasing to the ear. Multiple notes playing at the same time will usually be harmonic ratios of one another, either thirds, or fifths, or octaves. With this knowledge, once we have determined the pitch of the first note, we can determine what pitch the next note is likely to be. Our current system detects the pitch at each window without any dependence on the previously detected note. A better model would track the notes and continue detecting the same pitch until the note ends. Furthermore, Hidden Markov Models have been shown useful in tracking melodies, and such a tracking system could also be incorporated for better pitch detection.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elec 301 projects fall 2005. OpenStax CNX. Sep 25, 2007 Download for free at http://cnx.org/content/col10380/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elec 301 projects fall 2005' conversation and receive update notifications?

Ask