<< Chapter < Page Chapter >> Page >
Two photos of the Ebola virus are shown. Photo A is a scanning electron micrograph. There are many three dimensional long, round ended, viruses shown. Photo B is a color enhanced transmission electron micrograph. The viruses are the same size and shape as in photo A, but here some internal structure can be seen in longitudinal cross section.
The ebola virus is shown here as visualized through (a) a scanning electron micrograph and (b) a transmission electron micrograph. (credit a: modification of work by Cynthia Goldsmith, CDC; credit b: modification of work by Thomas W. Geisbert, Boston University School of Medicine; scale-bar data from Matt Russell)

The use of this technology has allowed for the discovery of many viruses of all types of living organisms. They were initially grouped by shared morphology, meaning their size, shape, and distinguishing structures. Later, groups of viruses were classified by the type of nucleic acid they contained, DNA or RNA, and whether their nucleic acid was single- or double-stranded. More recently, molecular analysis of viral replication cycles has further refined their classification.

A virion    consists of a nucleic-acid core, an outer protein coating, and sometimes an outer envelope made of protein and phospholipid membranes derived from the host cell. The most visible difference between members of viral families is their morphology, which is quite diverse. An interesting feature of viral complexity is that the complexity of the host does not correlate to the complexity of the virion. Some of the most complex virion structures are observed in bacteriophages, viruses that infect the simplest living organisms, bacteria.

Viruses come in many shapes and sizes, but these are consistent and distinct for each viral family ( [link] ). All virions have a nucleic-acid genome covered by a protective layer of protein, called a capsid    . The capsid is made of protein subunits called capsomeres. Some viral capsids are simple polyhedral “spheres,” whereas others are quite complex in structure. The outer structure surrounding the capsid of some viruses is called the viral envelope    . All viruses use some sort of glycoprotein    to attach to their host cells at molecules on the cell called viral receptors. The virus exploits these cell-surface molecules, which the cell uses for some other purpose, as a way to recognize and infect specific cell types. For example, the measles virus uses a cell-surface glycoprotein in humans that normally functions in immune reactions and possibly in the sperm-egg interaction at fertilization. Attachment is a requirement for viruses to later penetrate the cell membrane, inject the viral genome, and complete their replication inside the cell.

The T4 bacteriophage, which infects the E. coli bacterium, is among the most complex virion known; T4 has a protein tail structure that the virus uses to attach to the host cell and a head structure that houses its DNA.

Adenovirus, a nonenveloped animal virus that causes respiratory illnesses in humans, uses protein spikes protruding from its capsomeres to attach to the host cell. Nonenveloped viruses also include those that cause polio (poliovirus), plantar warts (papillomavirus), and hepatitis A (hepatitis A virus). Nonenveloped viruses tend to be more robust and more likely to survive under harsh conditions, such as the gut.

Questions & Answers

how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Which of the following is best at showing the life expandency of an individual within a a population
Daniel Reply
perianth is present in which gymnosperms ?
DebaXish Reply
perianth is present in which gymnos4perms ?
DebaXish Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Bi 101 for lbcc ilearn campus. OpenStax CNX. Nov 28, 2013 Download for free at http://legacy.cnx.org/content/col11593/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bi 101 for lbcc ilearn campus' conversation and receive update notifications?

Ask