



Why are diverging mirrors often used for rearview mirrors in vehicles? What is the main disadvantage of using such a mirror compared with a flat one?
Problems&Exercises
What is the focal length of a makeup mirror that has a power of 1.50 D?
Some telephoto cameras use a mirror rather than a lens. What radius of curvature mirror is needed to replace a 800 mm focal length telephoto lens?
(a) Calculate the focal length of the mirror formed by the shiny back of a spoon that has a 3.00 cm radius of curvature. (b) What is its power in diopters?
(a)
$\mathrm{\u20131.5}\times {10}^{\mathrm{\u20132}}\phantom{\rule{0.25em}{0ex}}\text{m}$
(b)
$\mathrm{\u201366.7\; D}$
Find the magnification of the heater element in
[link] . Note that its large magnitude helps spread out the reflected energy.
What is the focal length of a makeup mirror that produces a magnification of 1.50 when a person’s face is 12.0 cm away? Explicitly show how you follow the steps in the
ProblemSolving Strategy for Mirrors .
A shopper standing 3.00 m from a convex security mirror sees his image with a magnification of 0.250. (a) Where is his image? (b) What is the focal length of the mirror? (c) What is its radius of curvature? Explicitly show how you follow the steps in the
ProblemSolving Strategy for Mirrors .
An object 1.50 cm high is held 3.00 cm from a person’s cornea, and its reflected image is measured to be 0.167 cm high. (a) What is the magnification? (b) Where is the image? (c) Find the radius of curvature of the convex mirror formed by the cornea. (Note that this technique is used by optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a keratometer, or curve measurer.)
(a) +0.111
(b) 0.334 cm (behind “mirror”)
(c) 0.752cm
Ray tracing for a flat mirror shows that the image is located a distance behind the mirror equal to the distance of the object from the mirror. This is stated
${d}_{\text{i}}={\mathrm{\u2013d}}_{\text{o}}$ , since this is a negative image distance (it is a virtual image). (a) What is the focal length of a flat mirror? (b) What is its power?
Show that for a flat mirror
${h}_{\text{i}}={h}_{\text{o}}$ , knowing that the image is a distance behind the mirror equal in magnitude to the distance of the object from the mirror.
$m=\frac{{h}_{\text{i}}}{{h}_{\text{o}}}=\frac{{d}_{\text{i}}}{{d}_{\text{o}}}=\frac{{d}_{\text{o}}}{{d}_{\text{o}}}=\frac{{d}_{\text{o}}}{{d}_{\text{o}}}=1\Rightarrow {h}_{\text{i}}={h}_{\text{o}}$
Use the law of reflection to prove that the focal length of a mirror is half its radius of curvature. That is, prove that
$f=R/2$ . Note this is true for a spherical mirror only if its diameter is small compared with its radius of curvature.
Referring to the electric room heater considered in the first example in this section, calculate the intensity of IR radiation in
${\text{W/m}}^{2}$ projected by the concave mirror on a person 3.00 m away. Assume that the heating element radiates 1500 W and has an area of
$\text{100}\phantom{\rule{0.25em}{0ex}}{\text{cm}}^{2}$ , and that half of the radiated power is reflected and focused by the mirror.
$\text{6.82 k}{\text{W/m}}^{2}$
Consider a 250W heat lamp fixed to the ceiling in a bathroom. If the filament in one light burns out then the remaining three still work. Construct a problem in which you determine the resistance of each filament in order to obtain a certain intensity projected on the bathroom floor. The ceiling is 3.0 m high. The problem will need to involve concave mirrors behind the filaments. Your instructor may wish to guide you on the level of complexity to consider in the electrical components.
Questions & Answers
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials and their applications of sensors.
what is system testing?
AMJAD
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field .
1Electronicsmanufacturad IC ,RAM,MRAM,solar panel etc
2Helth and MedicalNanomedicine,Drug Dilivery for cancer treatment etc
3 Atomobile MEMS, Coating on car etc.
and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change .
maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Source:
OpenStax, Physics subject knowledge enhancement course (ske). OpenStax CNX. Jan 09, 2015 Download for free at http://legacy.cnx.org/content/col11505/1.10
Google Play and the Google Play logo are trademarks of Google Inc.