# 6.4 Hilbert spaces

 Page 1 / 1
This module introduces Hilbert spaces.

Now we consider inner product spaces with nice convergence properties that allow us to define countably-infinite orthonormalbases.

• A Hilbert space is a complete inner product space. A complete
The rational numbers provide an example of an incomplete set. We know thatit is possible to construct a sequence of rational numbers which approximate an irrational number arbitrarily closely. Itis easy to see that such a sequence will be Cauchy. However, the sequence will not converge to any rational number, and so the rationals cannot be complete.
space is one where all Cauchy sequences converge to some vector within the space. For sequence $\{{x}_{n}\}$ to be Cauchy , the distance between its elements must eventually become arbitrarily small: $\forall \epsilon , \epsilon > 0\colon \exists {N}_{\epsilon }\colon \forall n, m, (n\ge {N}_{\epsilon })\land (m\ge {N}_{\epsilon })\colon ({x}_{n}-{x}_{m})< \epsilon$ For a sequence $\{{x}_{n}\}$ to be convergent to x , the distance between its elements and $x$ must eventually become arbitrarily small: $\forall \epsilon , \epsilon > 0\colon \exists {N}_{\epsilon }\colon \forall n, n\ge {N}_{\epsilon }\colon ({x}_{n}-x)< \epsilon$ Examples are listed below (assuming the usual inner products):
• $V=\mathbb{R}^{N}$
• $V=\mathbb{C}^{N}$
• $V={l}_{2}$ ( i.e. , square summable sequences)
• $V={ℒ}_{2}$ ( i.e. , square integrable functions)
• We will always deal with separable Hilbert spaces, which are those that have a countable
A countable set is a set with at most a countably-infinite number of elements. Finite sets arecountable, as are any sets whose elements can be organized into an infinite list. Continuums ( e.g. , intervals of $\mathbb{R}$ ) are uncountably infinite.
orthonormal (ON) basis. A countable orthonormal basis for $V$ is a countable orthonormal set $S=\{{x}_{k}\}$ such that every vector in $V$ can be represented as a linear combination of elements in $S$ : $\forall y, y\in V\colon \exists \{{\alpha }_{k}\}\colon y=\sum_{k} {\alpha }_{k}{x}_{k}$ Due to the orthonormality of $S$ , the basis coefficients are given by ${\alpha }_{k}={x}_{k}\dot y$ We can see this via: ${x}_{k}\dot y={x}_{k}\dot \lim_{n\to }n\to$ i 0 n α i x i n x k i 0 n α i x i n i 0 n α i x k x i α k where $\delta (k-i)={x}_{k}\dot {x}_{i}$ (where the second equality invokes the continuity of the inner product). In finite $n$ -dimensional spaces ( e.g. , $\mathbb{R}^{n}$ or $\mathbb{C}^{n}$ ), any $n$ -element ON set constitutes an ON basis. In infinite-dimensional spaces, wehave the following equivalences :
• $\{{x}_{0}, {x}_{1}, {x}_{2}, \dots \}$ is an ON basis
• If ${x}_{i}\dot y=0$ for all $i$ , then $y=0$
• $\forall y, y\in V\colon (y)^{2}=\sum_{i} \left|{x}_{i}\dot y\right|^{2}$ (Parseval's theorem)
• Every $y\in V$ is a limit of a sequence of vectors in $\mathrm{span}(\{{x}_{0}, {x}_{1}, {x}_{2}, \dots \})$
Examples of countable ON bases for various Hilbert spaces include:
• $\mathbb{R}^{n}$ : $\{{e}_{0}, \dots , {e}_{N-1}\}$ for ${e}_{i}=\begin{pmatrix}0 & \dots & 0 & 1 & 0 & \dots & 0\\ \end{pmatrix}^T$ with "1" in the ${i}^{\mathrm{th}}$ position
• $\mathbb{C}^{n}$ : same as $\mathbb{R}^{n}$
• ${l}_{2}$ : $\{\{{\delta }_{i}(n)\}\colon i\in \mathbb{Z}\}$ , for $≔(\{{\delta }_{i}(n)\}, \{\delta (n-i)\})$ (all shifts of the Kronecker sequence)
• ${ℒ}_{2}$ : to be constructed using wavelets ...
• Say $S$ is a subspace of Hilbert space $V$ . The orthogonal complement of S in V , denoted ${S}^{\perp }$ , is the subspace defined by the set $\{x\in V\colon \perp (x, S)\}$ . When $S$ is closed, we can write $V=S\mathop{\mathrm{xor}}{S}^{\perp }$
• The orthogonal projection of y onto S , where $S$ is a closed subspace of $V$ , is $\stackrel{̂}{y}=\sum ({x}_{i}\dot y){x}_{i}$ s.t. $\{{x}_{i}\}$ is an ON basis for $S$ . Orthogonal projection yields the best approximation of $y$ in $S$ : $\stackrel{̂}{y}=\mathrm{argmin}(x\in S, (y-x))$ The approximation error $≔(e, y-\stackrel{̂}{y})$ obeys the orthogonality principle : $\perp (e, S)$ We illustrate this concept using $V=\mathbb{R}^{3}$ ( ) but stress that the same geometrical interpretation applies to any Hilbertspace.

A proof of the orthogonality principle is: $⇔(\perp (e, S), \forall i\colon e\dot {x}_{i}=0)$ $y-\stackrel{̂}{y}\dot {x}_{i}=0$

$y\dot {x}_{i}=\stackrel{̂}{y}\dot {x}_{i}=\sum ({x}_{j}\dot y){x}_{j}\dot {x}_{i}=\sum \overline{{x}_{j}\dot y}({x}_{j}\dot {x}_{i})=\sum (y\dot {x}_{j}){\delta }_{i-j}=y\dot {x}_{i}$

Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!