<< Chapter < Page Chapter >> Page >
  • Apply the circulation form of Green’s theorem.
  • Apply the flux form of Green’s theorem.
  • Calculate circulation and flux on more general regions.

In this section, we examine Green’s theorem, which is an extension of the Fundamental Theorem of Calculus to two dimensions. Green’s theorem has two forms: a circulation form and a flux form, both of which require region D in the double integral to be simply connected. However, we will extend Green’s theorem to regions that are not simply connected.

Put simply, Green’s theorem relates a line integral around a simply closed plane curve C and a double integral over the region enclosed by C . The theorem is useful because it allows us to translate difficult line integrals into more simple double integrals, or difficult double integrals into more simple line integrals.

Extending the fundamental theorem of calculus

Recall that the Fundamental Theorem of Calculus says that

a b F ( x ) d x = F ( b ) F ( a ) .

As a geometric statement, this equation says that the integral over the region below the graph of F ( x ) and above the line segment [ a , b ] depends only on the value of F at the endpoints a and b of that segment. Since the numbers a and b are the boundary of the line segment [ a , b ] , the theorem says we can calculate integral a b F ( x ) d x based on information about the boundary of line segment [ a , b ] ( [link] ). The same idea is true of the Fundamental Theorem for Line Integrals:

C f · d r = f ( r ( b ) ) f ( r ( a ) ) .

When we have a potential function (an “antiderivative”), we can calculate the line integral based solely on information about the boundary of curve C .

A graph in quadrant 1 of a generic function f(x). It is an increasing concave up function for the first quarter, an increasing concave down function for the second quarter, a decreasing concave down function for the third quarter, and an increasing concave down function for the last quarter. In the second quarter, a point a is marked on the x axis, and in the third quarter, a point b is marked on the x axis. The area under the curve and between a and b is shaded. This area is labeled the integral from a to b of f(x) dx.
The Fundamental Theorem of Calculus says that the integral over line segment [ a , b ] depends only on the values of the antiderivative at the endpoints of [ a , b ] .

Green’s theorem    takes this idea and extends it to calculating double integrals. Green’s theorem says that we can calculate a double integral over region D based solely on information about the boundary of D . Green’s theorem also says we can calculate a line integral over a simple closed curve C based solely on information about the region that C encloses. In particular, Green’s theorem connects a double integral over region D to a line integral around the boundary of D .

Circulation form of green’s theorem

The first form of Green’s theorem that we examine is the circulation form. This form of the theorem relates the vector line integral over a simple, closed plane curve C to a double integral over the region enclosed by C . Therefore, the circulation of a vector field along a simple closed curve can be transformed into a double integral and vice versa.

Green’s theorem, circulation form

Let D be an open, simply connected region with a boundary curve C that is a piecewise smooth, simple closed curve oriented counterclockwise ( [link] ). Let F = P , Q be a vector field with component functions that have continuous partial derivatives on D . Then,

C F · d r = C P d x + Q d y = D ( Q x P y ) d A .
A vector field in two dimensions with all of the arrows pointing up and to the right. A curve C oriented counterclockwise sections off a region D around the origin. It is a simple, closed region.
The circulation form of Green’s theorem relates a line integral over curve C to a double integral over region D .

Notice that Green’s theorem can be used only for a two-dimensional vector field F . If F is a three-dimensional field, then Green’s theorem does not apply. Since

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask