<< Chapter < Page Chapter >> Page >
This module was developed as part of the Rice University course CHEM-496: Chemistry of Electronic Materials . This module was prepared with the assistance of Wei Zhao.

Introduction

Chemical vapor deposition (CVD) is a process for depositing solid elements and compounds by reactions of gas-phase molecular precursors. Deposition of a majority of the solid elements and a large and ever-growing number of compounds is possible by CVD.

Most metallization for microelectronics today is performed by the physical vapor deposition (PVD) processes of evaporation and sputtering, which are often conceptually and experimentally more straightforward than CVD. However, the increasing importance of CVD is due to a large degree to the advantages that it holds over physical vapor deposition. Foremost among these are the advantages of conformal coverage and selectivity. Sputtering and evaporation are by their nature line-of-sight deposition processes in which the substrate to be coated must be placed directly in front of the PVD source. In contrast, CVD allows any substrate to be coated that is in a region of sufficient precursor partial pressure. This allows the uniform coating of several substrate wafers at once, of both sides of a substrate wafer, or of a substrate of large size and/or complex shape. The PVD techniques clearly will also deposit metal on any surface that is in line of sight. On the other hand, it is possible to deposit selectively on some substrate materials in the presence of others using CVD, because the deposition is controlled by the surface chemistry of the precursor/substrate pair. Thus, it may be possible, for example, to synthesize a CVD precursor that under certain conditions will deposit on metals but not on an insulating material such as SiO 2 , and to exploit this selectivity, for example, in the fabrication of a very large-scale integrated (VLSI) circuit. It should also be pointed out that, unlike some PVD applications, CVD does not cause radiation damage of the substrate.

Since the 1960s, there has been considerable interest in the application of metal CVD for thin-film deposition for metallization of integrated circuits. Research on the thermal CVD of copper is motivated by the fact that copper has physical properties that may make it superior to either tungsten or aluminum in certain microelectronics applications. The resistivity of copper (1.67 mW.cm) is much lower than that of tungsten (5.6 mW.cm) and significantly lower than that of aluminum (2.7 mW.cm). This immediately suggests that copper could be a superior material for making metal interconnects, especially in devices where relatively long interconnects are required. The electromigration resistance of copper is higher than that of aluminum by four orders of magnitude. Copper has increased resistance to stress-induced voidage due to its higher melting point versus aluminum. There are also reported advantages for copper related device performance such as greater speed and reduced cross talk and smaller RC time constants. On the whole, the combination of superior resistivity and intermediate reliability properties makes copper a promising material for many applications, provide that suitable CVD processes can be devised.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask