<< Chapter < Page Chapter >> Page >
The Huffman source coding algorithm is provably maximally efficient.

Shannon's Source Coding Theorem has additional applications in data compression . Here, we have a symbolic-valued signal source, like a computer file or an image, that we want torepresent with as few bits as possible. Compression schemes that assign symbols to bit sequences are known as lossless if they obey the Source Coding Theorem; they are lossy if they use fewer bits than the alphabet's entropy. Using a lossy compression scheme means that you cannotrecover a symbolic-valued signal from its compressed version without incurring some error. You might be wondering why anyonewould want to intentionally create errors, but lossy compression schemes are frequently used where the efficiency gained inrepresenting the signal outweighs the significance of the errors.

Shannon's Source Coding Theorem states that symbolic-valued signals require on the average at least H A number of bits to represent each of its values, which aresymbols drawn from the alphabet A . In the module on the Source Coding Theorem we find that using a so-called fixed rate source coder, one that produces a fixed number of bits/symbol, may not be the most efficient way of encodingsymbols into bits. What is not discussed there is a procedure for designing an efficient source coder: one guaranteed to produce the fewest bits/symbol on the average. That source coder is not unique,and one approach that does achieve that limit is the Huffman source coding algorithm .

In the early years of information theory, the race was on to be the first to find a provably maximally efficient source coding algorithm. The race was won by thenMIT graduate student David Huffman in 1954, who worked on the problem as a project in his information theory course. We'repretty sure he received an “A.”
  • Create a vertical table for the symbols, the best ordering being in decreasing order of probability.
  • Form a binary tree to the right of the table. A binary tree always has two branches at each node. Build the tree bymerging the two lowest probability symbols at each level, making the probability of the node equal to the sum of themerged nodes' probabilities. If more than two nodes/symbols share the lowest probability at a given level, pick any two;your choice won't affect B A .
  • At each node, label each of the emanating branches with a binary number. The bit sequence obtained from passingfrom the tree's root to the symbol is its Huffman code.

The simple four-symbol alphabet used in the Entropy and Source Coding modules has a four-symbol alphabet with the following probabilities, a 0 1 2 a 1 1 4 a 2 1 8 a 3 1 8 and an entropy of 1.75 bits . This alphabet has the Huffman coding tree shown in [link] .

Huffman coding tree

We form a Huffman code for a four-letter alphabet having the indicated probabilities of occurrence. The binary treecreated by the algorithm extends to the right, with the root node (the one at which the tree begins) defining thecodewords. The bit sequence obtained by traversing the tree from the root to the symbol defines that symbol's binarycode.

The code thus obtained is not unique as we could have labeled the branches coming out of each node differently. The averagenumber of bits required to represent this alphabet equals 1.75  bits, which is the Shannon entropy limit for this source alphabet. If we had thesymbolic-valued signal s m a 2 a 3 a 1 a 4 a 1 a 2 , our Huffman code would produce the bitstream b n 101100111010… .

If the alphabet probabilities were different, clearly a different tree, and therefore different code, could wellresult. Furthermore, we may not be able to achieve the entropy limit. If our symbols had the probabilities a 1 1 2 , a 2 1 4 , a 3 1 5 , and a 4 1 20 , the average number of bits/symbol resulting from the Huffman coding algorithm would equal 1.75  bits. However, the entropy limit is 1.68 bits. The Huffman code does satisfy the SourceCoding Theorem—its average length is within one bit of the alphabet's entropy—but you might wonder if a better codeexisted. David Huffman showed mathematically that no other code could achieve a shorter average code than his. We can'tdo better.

Got questions? Get instant answers now!

Derive the Huffman code for this second set of probabilities, and verify the claimed average code lengthand alphabet entropy.

The Huffman coding tree for the second set of probabilities is identical to that for the first ( [link] ). The average code length is 1 2 1 1 4 2 1 5 3 1 20 3 1.75 bits. The entropy calculation is straightforward: H A 1 2 1 2 1 4 1 4 1 5 1 5 1 20 1 20 , which equals 1.68 bits.

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask