<< Chapter < Page Chapter >> Page >

Least and greatest function values are characterizing aspects of a function. In particular, they allow us to determine range of function if function is continuous. Determination of these values, however, is not straight forward as there may be large numbers of minimum and maximum through out the domain of the function. It is difficult to say which of these are least or greatest of all. Two things simplify our analysis : (i) domain of investigation is finite and (ii) function is monotonic in sub-intervals within domain.

The study of least and greatest function values in this module is targeted to determine range of function. If “A” and “B” be the least and greatest values of a continuous function in a finite interval, then range of the function is given by :

Range = [ least, greatest ] = [ a,b ]

We should note that determining range is a comparatively more difficult proposition than determining domain. Recall that we need to solve given function for x to determine range. This solution, however, is not always explicit. As such, we may be stuck with problem of finding range of more complex functions – particularly those, which involves transcendental functions.

Further, we need to underline one important aspect, while evaluating range of a composite function. Range of a composite function is evaluated from inside to outside. This means that we need to evaluate innermost function and then the one outside it. This is an opposite order of evaluation with respect to domain which is evaluated from outside to inside. We shall highlight these aspects while working with examples.

In the following sections, we discuss various context of least and greatest values.

Standard functions

We are familiar with the least value, greatest value and range of the most standard functions of all origin. Consider constant, identity, reciprocal, modulus, greatest integer, least integer, fraction part, trigonometric, inverse trigonometric, exponential and logarithmic functions. All these functions have been described in detail and we know their properties with respect to least and greatest values and also the range. Greatest value of sine function, for example, is 1. On the other hand, exponential and logarithmic functions etc. neither have minimum (therefore least value) nor maximum (therefore greatest value). However, these functions have least and greatest in finite interval in accordance with mean value theorem.

In case, the function can be reduced to the standard forms having least and greatest values, then it is possible to know its range. In the example, we consider one such trigonometric function.

Problem : Find the range of the continuous function given by :

f x = a cos x + b sin x

where “a” and “b” are constants.

Solution : Here, given function is addition of two trigonometric functions. As we know least and greatest values of sine and cosine functions, we shall attempt to reduce given function in terms of either sine or cosine function (note that the algorithm for reducing addition of sine and cosine functions as presented here is a standard algorithm. We should also note that this algorithm, as a matter of fact, is used in analyzing superposition principle of waves) :

Let a = r cos α and b = r sin α


r = a 2 + b 2

Substituting in the given function, we have :

f x = r cos α cos x + r sin α sin x = r cos x α = a 2 + b 2 cos x α

We know that minimum and maximum values of cosine function are "-1" and "1" respectively. Hence,

f x min = - a 2 + b 2

f x max = a 2 + b 2

Therefore, range of the given function is :

Range = [ - a 2 + b 2 , a 2 + b 2 ]

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
What is power set
Satyabrata Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?