<< Chapter < Page Chapter >> Page >
Diffraction pattern obtained for electrons diffracted by crystalline silicon is shown. The diffraction pattern has a bright spot at the center of a circle with brighter and darker regions occurring in a symmetric manner.
This diffraction pattern was obtained for electrons diffracted by crystalline silicon. Bright regions are those of constructive interference, while dark regions are those of destructive interference. (credit: Ndthe, Wikimedia Commons)

Electron wavelength versus velocity and energy

For an electron having a de Broglie wavelength of 0.167 nm (appropriate for interacting with crystal lattice structures that are about this size): (a) Calculate the electron’s velocity, assuming it is nonrelativistic. (b) Calculate the electron’s kinetic energy in eV.

Strategy

For part (a), since the de Broglie wavelength is given, the electron’s velocity can be obtained from λ = h / p size 12{λ = h/p} {} by using the nonrelativistic formula for momentum, p = mv. size 12{p= ital "mv"} {} For part (b), once v size 12{v} {} is obtained (and it has been verified that v size 12{v} {} is nonrelativistic), the classical kinetic energy is simply ( 1 / 2 ) mv 2 . size 12{ \( 1/2 \) ital "mv" rSup { size 8{2} } } {}

Solution for (a)

Substituting the nonrelativistic formula for momentum ( p = mv size 12{p= ital "mv"} {} ) into the de Broglie wavelength gives

λ = h p = h mv . size 12{λ = { {h} over {p} } = { {h} over { ital "mv"} } } {}

Solving for v size 12{v} {} gives

v = h . size 12{v = { {h} over {mλ} } } {}

Substituting known values yields

v = 6 . 63 × 10 –34 J s ( 9.11 × 10 –31 kg ) ( 0 . 167 × 10 –9 m ) = 4 . 36 × 10 6 m/s . size 12{v = { {6 "." "63 " times " 10" rSup { size 8{"–34"} } " J " cdot " s"} over { \( 9 "." "11 " times " 10" rSup { size 8{"–31"} } " kg" \) \( 0 "." "167 " times " 10" rSup { size 8{"–9"} } " m" \) } } =" 4" "." "36 " times " 10" rSup { size 8{6} } " m/s"} {}

Solution for (b)

While fast compared with a car, this electron’s speed is not highly relativistic, and so we can comfortably use the classical formula to find the electron’s kinetic energy and convert it to eV as requested.

KE = 1 2 mv 2 = 1 2 ( 9.11 × 10 –31 kg ) ( 4.36 × 10 6 m/s ) 2 = (86.4 × 10 –18 J) ( 1 eV 1.602 × 10 –19 J ) = 54.0 eV alignl { stack { size 12{"KE "= { {1} over {2} } ital "mv" rSup { size 8{2} } } {} #=" 0" "." 5 \( 9 "." "11 " times " 10" rSup { size 8{"–31"} } " kg" \) \( 4 "." "36 " times " 10" rSup { size 8{6} } " m/s" \) rSup { size 8{2} } {} # =" 8" "." "64 " times " 10" rSup { size 8{"–18"} } " J " cdot { {"1eV"} over {1 "." "60 " times " 10" rSup { size 8{"–19"} } " J"} } {} #=" 54" "." "0 eV" "." {} } } {}

Discussion

This low energy means that these 0.167-nm electrons could be obtained by accelerating them through a 54.0-V electrostatic potential, an easy task. The results also confirm the assumption that the electrons are nonrelativistic, since their velocity is just over 1% of the speed of light and the kinetic energy is about 0.01% of the rest energy of an electron (0.511 MeV). If the electrons had turned out to be relativistic, we would have had to use more involved calculations employing relativistic formulas.

Electron microscopes

One consequence or use of the wave nature of matter is found in the electron microscope. As we have discussed, there is a limit to the detail observed with any probe having a wavelength. Resolution, or observable detail, is limited to about one wavelength. Since a potential of only 54 V can produce electrons with sub-nanometer wavelengths, it is easy to get electrons with much smaller wavelengths than those of visible light (hundreds of nanometers). Electron microscopes can, thus, be constructed to detect much smaller details than optical microscopes. (See [link] .)

There are basically two types of electron microscopes. The transmission electron microscope (TEM) accelerates electrons that are emitted from a hot filament (the cathode). The beam is broadened and then passes through the sample. A magnetic lens focuses the beam image onto a fluorescent screen, a photographic plate, or (most probably) a CCD (light sensitive camera), from which it is transferred to a computer. The TEM is similar to the optical microscope, but it requires a thin sample examined in a vacuum. However it can resolve details as small as 0.1 nm ( 10 10 m size 12{"10" rSup { size 8{ - "10"} } `m} {} ), providing magnifications of 100 million times the size of the original object. The TEM has allowed us to see individual atoms and structure of cell nuclei.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Basic physics for medical imaging. OpenStax CNX. Feb 17, 2014 Download for free at http://legacy.cnx.org/content/col11630/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic physics for medical imaging' conversation and receive update notifications?

Ask