# 5.6 Satellites and kepler’s laws: an argument for simplicity  (Page 3/5)

 Page 3 / 5
${F}_{\text{net}}={\text{ma}}_{\text{c}}=m\frac{{v}^{2}}{r}\text{.}$

The net external force on mass $m$ is gravity, and so we substitute the force of gravity for ${F}_{\text{net}}$ :

$G\frac{\text{mM}}{{r}^{2}}=m\frac{{v}^{2}}{r}\text{.}$

The mass $m$ cancels, yielding

$G\frac{M}{r}={v}^{2}\text{.}$

The fact that $m$ cancels out is another aspect of the oft-noted fact that at a given location all masses fall with the same acceleration. Here we see that at a given orbital radius $r$ , all masses orbit at the same speed. (This was implied by the result of the preceding worked example.) Now, to get at Kepler’s third law, we must get the period $T$ into the equation. By definition, period $T$ is the time for one complete orbit. Now the average speed $v$ is the circumference divided by the period—that is,

$v=\frac{2\pi r}{T}\text{.}$

Substituting this into the previous equation gives

$G\frac{\text{M}}{r}=\frac{{\mathrm{4\pi }}^{2}{r}^{2}}{{T}^{2}}\text{.}$

Solving for ${T}^{2}$ yields

${T}^{2}=\frac{{4\pi }^{2}}{\text{GM}}{r}^{3}\text{.}$

Using subscripts 1 and 2 to denote two different satellites, and taking the ratio of the last equation for satellite 1 to satellite 2 yields

This is Kepler’s third law. Note that Kepler’s third law is valid only for comparing satellites of the same parent body, because only then does the mass of the parent body $M$ cancel.

Now consider what we get if we solve ${T}^{2}=\frac{{4\pi }^{2}}{\text{GM}}{r}^{3}$ for the ratio ${r}^{3}/{T}^{2}$ . We obtain a relationship that can be used to determine the mass $M$ of a parent body from the orbits of its satellites:

$\frac{{r}^{3}}{{T}^{2}}=\frac{G}{{4\pi }^{2}}M\text{.}$

If $r$ and $T$ are known for a satellite, then the mass $M$ of the parent can be calculated. This principle has been used extensively to find the masses of heavenly bodies that have satellites. Furthermore, the ratio ${r}^{3}/{T}^{2}$ should be a constant for all satellites of the same parent body (because ${r}^{3}/{T}^{2}=\text{GM}/{4\pi }^{2}$ ). (See [link] ).

It is clear from [link] that the ratio of ${r}^{3}/{T}^{2}$ is constant, at least to the third digit, for all listed satellites of the Sun, and for those of Jupiter. Small variations in that ratio have two causes—uncertainties in the $r$ and $T$ data, and perturbations of the orbits due to other bodies. Interestingly, those perturbations can be—and have been—used to predict the location of new planets and moons. This is another verification of Newton’s universal law of gravitation.

## Making connections

Newton’s universal law of gravitation is modified by Einstein’s general theory of relativity, as we shall see in Particle Physics . Newton’s gravity is not seriously in error—it was and still is an extremely good approximation for most situations. Einstein’s modification is most noticeable in extremely large gravitational fields, such as near black holes. However, general relativity also explains such phenomena as small but long-known deviations of the orbit of the planet Mercury from classical predictions.

## The case for simplicity

The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas. While it is beyond the scope of this text to cover that history in any detail, we note some important points. The definition of planet set in 2006 by the International Astronomical Union (IAU) states that in the solar system, a planet is a celestial body that:

1. is in orbit around the Sun,
2. has sufficient mass to assume hydrostatic equilibrium and
3. has cleared the neighborhood around its orbit.

Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
Got questions? Join the online conversation and get instant answers!