<< Chapter < Page Chapter >> Page >
Discussion of Discrete-time Fourier Transforms. Topics include comparison with analog transforms and discussion of Parseval's theorem.

The Fourier transform of the discrete-time signal s n is defined to be

S 2 f n s n 2 f n
Frequency here has no units. As should be expected, thisdefinition is linear, with the transform of a sum of signals equaling the sum of their transforms. Real-valued signals haveconjugate-symmetric spectra: S 2 f S j 2 f .

A special property of the discrete-time Fourier transform isthat it is periodic with period one: S 2 f 1 S 2 f . Derive this property from the definition of the DTFT.

S 2 f 1 n s n 2 f 1 n n 2 n s n 2 f n n s n 2 f n S 2 f
Got questions? Get instant answers now!

Because of this periodicity, we need only plot the spectrum overone period to understand completely the spectrum's structure; typically, we plot the spectrum over the frequency range 1 2 1 2 . When the signal is real-valued, we can further simplify ourplotting chores by showing the spectrum only over 0 1 2 ; the spectrum at negative frequencies can be derived frompositive-frequency spectral values.

When we obtain the discrete-time signal via sampling an analog signal, the Nyquist frequency corresponds to the discrete-time frequency 1 2 . To show this, note that a sinusoid having a frequency equal to the Nyquist frequency 1 2 T s has a sampled waveform that equals 2 1 2 T s n T s n 1 n The exponential in the DTFT at frequency 1 2 equals 2 n 2 n 1 n , meaning that discrete-time frequency equals analog frequency multiplied by the sampling interval

f D f A T s
f D and f A represent discrete-time and analog frequency variables, respectively. The aliasing figure provides another way of deriving this result. As the duration of eachpulse in the periodic sampling signal p T s t narrows, the amplitudes of the signal's spectral repetitions, which are governed by the Fourier series coefficients of p T s t , become increasingly equal. Examination of the periodic pulse signal reveals that as Δ decreases, the value of c 0 , the largest Fourier coefficient, decreases to zero: c 0 A Δ T s . Thus, to maintain a mathematically viable Sampling Theorem, theamplitude A must increase as 1 Δ , becoming infinitely large as the pulse duration decreases. Practical systems use a small value of Δ , say 0.1 · T s and use amplifiers to rescale the signal. Thus, the sampledsignal's spectrum becomes periodic with period 1 T s . Thus, the Nyquist frequency 1 2 T s corresponds to the frequency 1 2 .

Let's compute the discrete-time Fourier transform of the exponentially decaying sequence s n a n u n , where u n is the unit-step sequence. Simply plugging the signal'sexpression into the Fourier transform formula,

S 2 f n a n u n 2 f n n 0 a 2 f n

This sum is a special case of the geometric series .

n 0 α n α α 1 1 1 α

Thus, as long as a 1 , we have our Fourier transform.

S 2 f 1 1 a 2 f

Using Euler's relation, we can express the magnitude and phase of this spectrum.

S 2 f 1 1 a 2 f 2 a 2 2 f 2
S 2 f a 2 f 1 a 2 f

No matter what value of a we choose, the above formulae clearly demonstrate the periodicnature of the spectra of discrete-time signals. [link] shows indeed that the spectrum is a periodic function. We need only consider the spectrumbetween 1 2 and 1 2 to unambiguously define it. When a 0 , we have a lowpass spectrum—the spectrum diminishes asfrequency increases from 0 to 1 2 —with increasing a leading to a greater low frequency content; for a 0 , we have a highpass spectrum( [link] ).

Got questions? Get instant answers now!

Spectrum of exponential signal

The spectrum of the exponential signal ( a 0.5 ) is shown over the frequency range [-2, 2], clearly demonstrating the periodicity of all discrete-time spectra. The angle has unitsof degrees.

Spectra of exponential signals

The spectra of several exponential signals are shown. What is the apparent relationship between the spectra for a 0.5 and a 0.5 ?

Analogous to the analog pulse signal, let's find the spectrum of the length- N pulse sequence.

s n 1 0 n N 1 0

The Fourier transform of this sequence has the form of a truncated geometric series.

S 2 f n 0 N 1 2 f n

For the so-called finite geometric series, we know that

n n 0 N n 0 1 α n α n 0 1 α N 1 α
for all values of α.

Got questions? Get instant answers now!

Derive this formula for the finite geometric series sum. The "trick" is to consider the difference between theseries' sum and the sum of the series multiplied by α .

α n n 0 N n 0 1 α n n n 0 N n 0 1 α n α N n 0 α n 0 which, after manipulation, yields the geometric sum formula.

Got questions? Get instant answers now!

Applying this result yields ( [link] .)

S 2 f 1 2 f N 1 2 f f N 1 f N f
The ratio of sine functions has the generic form of N x x , which is known as the discrete-time sinc function dsinc x . Thus, our transform can be concisely expressed as S 2 f f N 1 dsinc f . The discrete-time pulse's spectrum contains many ripples, the number of which increase with N , the pulse's duration.

Spectrum of length-ten pulse

The spectrum of a length-ten pulse is shown. Can you explain the rather complicated appearance of the phase?

The inverse discrete-time Fourier transform is easily derived from the following relationship:

1 2 1 2 f 2 f m 2 f n 1 m n 0 m n δ m n
Therefore, we find that
f 1 2 1 2 S 2 f 2 f n f 1 2 1 2 m m s m 2 f m 2 f n m m s m f 1 2 1 2 2 f m n s n
The Fourier transform pairs in discrete-time are
S 2 f n s n 2 f n s n f 1 2 1 2 S 2 f 2 f n

The properties of the discrete-time Fourier transform mirror those of the analog Fourier transform. The DTFT properties table shows similarities and differences. One important common property is Parseval's Theorem.

n s n 2 f 1 2 1 2 S 2 f 2
To show this important property, we simply substitute theFourier transform expression into the frequency-domain expression for power.
f 1 2 1 2 S 2 f 2 f 1 2 1 2 n n s n 2 f n m m s n 2 f m , n m , n m s n s n f 1 2 1 2 2 f m n
Using the orthogonality relation , the integral equals δ m n , where δ n is the unit sample . Thus, the double sum collapses into a single sum because nonzero values occur only when n m , giving Parseval's Theorem as a result. We term n n s n 2 the energy in the discrete-time signal s n in spite of the fact that discrete-time signals don't consume(or produce for that matter) energy. This terminology is a carry-over from the analog world.

Suppose we obtained our discrete-time signal from values ofthe product s t p T s t , where the duration of the component pulses in p T s t is Δ . How is the discrete-time signal energy related to the total energycontained in s t ? Assume the signal is bandlimited and that the sampling ratewas chosen appropriate to the Sampling Theorem's conditions.

If the sampling frequency exceeds the Nyquist frequency, thespectrum of the samples equals the analog spectrum, but overthe normalized analog frequency f T . Thus, the energy in the sampled signal equals the original signal's energy multiplied by T .

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask